disposition where the whole helicene framework seems to be
extended to a [8]helicene-like molecule (Scheme 3).
S. Menichetti, Chem.–Eur. J., 2008, 14, 5747–5750; (n) J. Ichikawa,
M. Yokota, T. Kudo and S. Umezaki, Angew. Chem., Int. Ed.,
2008, 47, 4870–4873.
In summary, we have evidenced the ability of a homochiral
sulfoxide situated on an enantiopure benzoquinone to transfer
its central chirality to a chiral axis and a helicene framework in
an efficient manner. The syntheses of biaryl[4] and [5]helicene
quinones was achieved in a very short, convergent and highly
enantioselective manner. The adequate substitution of the
biaryl diene partner sums up the resolution or dynamic kinetic
resolution of the initial chiral racemic biaryl axis.
8 There are several examples in the literature of helicenes bearing
phenyl groups with no substituents at the ortho positions:
(a) Y. Zhang, J. L. Petersen and K. K. Wang, Tetrahedron, 2008,
64, 1285–1293; (b) Y. Yang, W. Dai, Y. Zhang, J. L. Petersen and
K. K. Wang, Tetrahedron, 2006, 62, 4364–4371; (c) F. Cozzi,
R. Annunziata, M. Benaglia, M. Cinquini, L. Raimondi,
K. K. Baldridge and J. S. Siegel, Org. Biomol. Chem., 2003, 1,
157–162; (d) H. Li, J. L. Petersen and K. K. Wang, J. Org. Chem.,
2001, 66, 7804–7810; (e) W. H. Laarhoven, W. H. M. Peters and A.
H. A. Tinnemans, Tetrahedron, 1978, 34, 769–777; (f) A. H.
A. Tinnemans and W. H. Laarhoven, J. Chem. Soc., Perkin Trans.
2, 1976, 1115–1120; (g) W. H. Laarhoven and P. G. F. Boumans,
Recl. Trav. Chim. Pays-Bas, 1975, 94, 114–118; (h) A. H.
A. Tinnemans and W. H. Laarhoven, J. Am. Chem. Soc., 1974,
96, 4617–4622; (i) A. H. A. Tinnemans and W. H. Laarhoven,
We thank MICINN (Grant CTQ2008-04691) for financial
support. A.L. wishes to thank MEC for a fellowship. We are
grateful to Dr Jordi Benet-Buchholz at ICIQ (Tarragona,
Spain) for determining the crystal structure of 4a.
Tetrahedron Lett., 1973, 14, 817–820.
´
9 (a) M. C. Carreno, A. Enrı
Notes and references
´
Sanz-Cuesta, A. Urbano, F. Maseras and A. Nonell-Canals,
quez, S. Garcı
´
a-Cerrada, M. J.
1 E. L. Eliel and S. H. Wilen, Stereochemistry of
Organic Compounds, Wiley, New York, 1994.
2 (a) O. Baudoin and F. Gueritte, Stud. Nat. Prod. Chem., 2003,
Chem.–Eur. J., 2008, 14, 603–620; (b) M. C. Carreno,
M. Gonza
611–613; (c) M. C. Carreno, S. Garcı
Chem.–Eur. J., 2003, 9, 4118–4131; (d) M. C. Carreno, S. Garcı
Cerrada and A. Urbano, J. Am. Chem. Soc., 2001, 123, 7929–7930;
(e) M. C. Carreno, S. Garcıa-Cerrada, M. J. Sanz-Cuesta and
A. Urbano, Chem. Commun., 2001, 1452–1453.
10 Recent review: M. C. Carreno, G. Herna
´
lez-Lo
´
pez and A. Urbano, Chem. Commun., 2005,
a-Cerrada and A. Urbano,
a-
29(Part J), 355–417; (b) G. Bringmann, C. Gunther, M. Ochse,
¨
´
O. Schupp and S. Tasler, Prog. Chem. Org. Nat. Prod., 2001, 82,
1–293; (c) G. Bringmann and D. Menche, Acc. Chem. Res., 2001,
34, 615–624.
3 (a) J. M. Brunel, Chem. Rev., 2005, 105, 857–897; (b) P. Kocovsky,
S. Vyskocil and M. Smrcina, Chem. Rev., 2003, 103, 3213–3245;
(c) Y. Chen, S. Yekta and A. K. Yudin, Chem. Rev., 2003, 103,
3155–3211; (d) R. Noyori, Angew. Chem., Int. Ed., 2002, 41,
2008–2022.
4 (a) T. W. Wallace, Org. Biomol. Chem., 2006, 4, 3197–3210;
(b) O. Baudoin, Eur. J. Org. Chem., 2005, 4223–4466.
5 (a) C. Wolf, Dynamic Stereochemistry of Chiral Compounds.
Principles and Applications, RSC, Cambridge, 2008, ch. 6.2,
pp. 215–231; (b) G. Bringmann, A. J. P. Mortimer, P. A. Keller,
M. J. Gresser, J. Garner and M. Breuning, Angew. Chem., Int. Ed.,
2005, 44, 5384–5427.
6 (a) A. Rajca and M. Miyasaka, Functional Organic Materials:
Syntheses and Strategies, Wiley-VCH, Weinheim, 2007,
pp. 543–577; (b) T. J. Katz, Angew. Chem., Int. Ed., 2000, 39,
1921–1923; (c) Y. Xu, Y. X. Zhang, H. Sugiyama, T. Umano,
H. Osuga and K. Tanaka, J. Am. Chem. Soc., 2004, 126,
6566–6567.
´
´
´
ndez-Torres,
M. Ribagorda and A. Urbano, Chem. Commun., 2009, DOI:
10.1039/b908043k.
11 For definitions of dynamic kinetic resolution (DKR), see:
(a) H. Pellissier, Tetrahedron, 2008, 64, 1563–1601. DKR is an
efficient method to obtain optically pure compounds from racemic
substrates, which combines the resolution step of kinetic resolution
with an in situ equilibration or racemisation of the configura-
tionally labile substrate; (b) ref. 5a, chapter 7.4.2, p. 359: DKR,
which is aimed at completed conversion of a racemate to an
enantiopure product, takes advantage of different reactivities of
stereolabile enantiomers and therefore requires kinetic control.
12 (a) M. C. Carreno, J. L. Garcıa Ruano and A. Urbano, Synthesis,
´
1992, 651–653; (b) Enantiopure 5-methyl-substituted sulfinyl
quinone (SS)-2 was used, instead of the unsubstituted one, to avoid
the undesired evolution observed for the latter in the reaction with
this type ofdiene through the non-sulfinylated C5–C6 double bond.
13 L. F. Tietze, G. Brasche and K. M. Gericke, Domino Reactions in
Organic Synthesis, Wiley-VCH, Weinheim, 2006.
7 Recent highlight: (a) A. Urbano, Angew. Chem., Int. Ed., 2003, 42,
3986–3989. Very recent references; (b) G. Pieters, A. Gaucher,
D. Prim and J. Marrot, Chem. Commun., 2009, 4827–4828;
(c) M. Miyasaka, M. Pink, S. Rajca and A. Rajca, Angew. Chem.,
Int. Ed., 2009, 48, 5954–5957; (d) M. S. M. Pearson and
D. R. Carbery, J. Org. Chem., 2009, 74, 5320–5325;
(e) K. Tanaka, N. Fukawa, T. Suda and K. Noguchi, Angew.
14 The optical purities were evaluated by chiral HPLC (see ESIw). The
racemic compounds necessary for such evaluations were obtained
from the corresponding racemic sulfinyl quinones12a
.
15 The (P) absolute configuration of all helical quinones synthesized
was initially assigned on the basis of the positive sign of their
optical rotations and later confirmed for several derivatives by
applying the methodology described by Katz (T. Thongpanchang,
K. Paruch, T. J. Katz, A. L. Rheingold, K. Lam and L. Liable-
Sands, J. Org. Chem., 2000, 65, 1850–1856) based on the
OQC–C–O conformations of their bis-(À)-camphanates which
bring about a different NMR behaviour for each (P) or (M)
diastereoisomer (see ESIw).
16 CCDC-713296 for (P,aR)-4a and CCDC-713295 for (P,aS)-6
contain the supplementary crystallographic data for this
communication.
17 Contact distances of 3.4–3.6 A are within the range for p–p
interactions: M. D. Curtis, J. Cao and J. W. Kampf, J. Am. Chem.
Soc., 2004, 126, 4318–4328.
Chem., Int. Ed., 2009, 48, 5470–5473; (f) J. Cote and S. K. Collins,
´
Synthesis, 2009, 1499–1505; (g) J. Storch, J. Sykora, J. Cermak,
J. Karban, I. Cisarova and A. Ruzicka, J. Org. Chem., 2009, 74,
3090–3093; (h) S. Graule, M. Rudolph, N. Vanthuyne,
J. Autschbach, Ch. Roussel, J. Crassous and R. Reau, J. Am.
Chem. Soc., 2009, 131, 3183–3185; (i) L. Adriaenssens, L. Severa,
T. Salova, I. Cisarova, R. Pohl, D. Saman, S. V. Rocha,
N. S. Finney, L. Pospisil, P. Slavicek and F. Teply, Chem.–Eur.
J., 2009, 15, 1072–1076; (j) Ch. Li, J. Shi, L. Xu, Y. Wang,
Y. Cheng and H. Wang, J. Org. Chem., 2009, 74, 408–411;
(k) N. Takenaka, R. S. Sarangthem and B. Captain, Angew. Chem.,
Int. Ed., 2008, 47, 9708–9710; (l) A. Grandbois and S. K. Collins,
Chem.–Eur. J., 2008, 14, 9323–9329; (m) G. Lamanna, C. Faggi,
F. Gasparrini, A. Ciogli, C. Villani, P. J. Stephens, F. J. Devlin and
ꢀc
This journal is The Royal Society of Chemistry 2009
6654 | Chem. Commun., 2009, 6652–6654