C O M M U N I C A T I O N S
Scheme 3. Total Synthesis of (S)-Turmerone
pp 1-85. Recent examples for C-C coupling using aliphatic pinacol
boronic esters: (d) Imao, D.; Glasspoole, B. W.; Laberge, V. S.; Crudden,
C. M. J. Am. Chem. Soc. 2009, 131, 5024–5025. (e) Ros, A.; Aggarwal,
V. K. Angew. Chem., Int. Ed. 2009, 48, 6289–6292.
(4) (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature
2008, 456, 778–783. (b) Bagutski, V.; French, R. M.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2010, 49, 5142–5145.
(5) (a) Chen, I.-H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2009, 131, 11664–11665. (b) Lee, K.; Zhugralin, A.; Hoveyda, A.
J. Am. Chem. Soc. 2009, 131, 7253. (c) O’Brien, J. M.; Lee, K.-S.; Hoveyda,
A. H. J. Am. Chem. Soc. 2010, 132, 10630–10633. (d) Guzman-Martinez,
A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634–10637.
(6) (a) O’Shea, P. D.; Chen, C.-Y.; Chen, W.; Dagneau, P.; Frey, L. F.;
Grabowski, E. J. J.; Marcantonio, K. M.; Reamer, R. A.; Tan, L.; Tillyer,
R. D.; Roy, A.; Wang, X.; Zhao, D. J. Org. Chem. 2005, 70, 3021–3030.
(b) Fessard, T. C.; Andrews, S. P.; Motoyoshi, H.; Carreira, E. M. Angew.
Chem., Int. Ed. 2007, 46, 9331–9334. (c) Kleemann, A. Pharmaceutical
substances: Syntheses, Patents, Applications, 4th ed.; Thieme: Stuttgart,
2001.
(7) (a) Matteson, D. S. J. Organomet. Chem. 1999, 581, 51–65. Renaud has
discovered an unusual (nonselective) protodeboronation of catechol boronic
esters in the presence of methanol. (b) Pozzi, D.; Scanlan, E.; Renaud, P.
J. Am. Chem. Soc. 2005, 127, 14204–14205. (c) Povie, G.; Villa, G.; Ford,
L.; Pozzi, D.; Schiesser, C. H.; Renaud, P. Chem. Commun. 2010, 46, 803–
805.
(8) The relative rates of protodeboronation of boranes are 1 (primary):0.052
(secondary):∼0 (tertiary). See: Brown, H. C.; Murray, K. J. Tetrahedron
1986, 42, 5497–5504. However, the presence of aromatic groups should
promote protodeboronation and so will temper the inherently slow rate
associated with tertiary boronic esters. See: Brown, H. C.; Zweifel, G. J. Am.
Chem. Soc. 1959, 81, 1512.
(9) Brown, H. C.; Marray, K. J. Tetrahedron 1986, 42, 5497–5504.
(10) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Butterworth-
Heineman: Oxford, 1997; pp 196.
(11) Bond enthalpy data were taken from (accessed on 8/25/2010) http://
(12) The reactivity of fluoride in organic solution is fundamentally dependent
on the water content: Sun, H.; DiMagno, S. G. J. Am. Chem. Soc. 2005,
127, 2050–2051.
(13) The term enantiospecificity has been used to describe the conservation of
optical purity over the course of stereospecific reactions: (a) Denmark, S. E.;
Vogler, T. Chem.sEur. J. 2009, 15, 11737. (b) Ohmura, T.; Awano, T.;
Suginome, M. J. Am. Chem. Soc. 2010, 132, 13191–13193.
(14) The ee of 1a after 15 min, 1 h, 2 h, 5 h, and 12 h was 70% in all cases.
(15) Typical chemical shifts in 11B NMR of Bu4NArB(pin)F in THF are around
δ 7.0 ppm. Oehlke, A.; Auer, A. A.; Schreiter, K.; Hofmann, K.; Riedel,
F.; Spange, S. J. Org. Chem. 2009, 74, 3316–3322, and references therein.
(16) Henderson, W. G.; How, M. J.; Kennedy, G. R.; Mooney, E. F. Carbohydr.
Res. 1973, 28, 1–12.
alcohol,20 which was subjected to lithiation with 1.2 equiv of sec-
BuLi in the presence of TMEDA for 10 min. Subsequent reaction
with 1.5 equiv of allyl pinacol boronic ester furnished the tertiary
boronic ester 11, which was used in the key protodeboronation step
without further purification. Treatment of 11 with 1.5 equiv of
TBAF ·3H2O in pentane at 45 °C smoothly afforded the protode-
boronated product 12, installing the benzylic tertiary center in
excellent yield (76% over two steps) and selectivity (99:1 e.r.).
Finally, oxidation21 of alkene 12 to aldehyde 13 followed by
addition of 2-methyl-1-propenylmagnesium bromide and subsequent
oxidation with PDC furnished the target compound, (S)-turmerone.
The synthesis was completed in seven steps from p-methylac-
etophenone and delivered the target compound in (99:1 e.r.).
In conclusion, we have discovered a new and simple way to
effect protodeboronation of boronic esters using CsF-H2O or
TBAF·3H2O with essentially complete stereocontrol, thus providing
ready access to enantioenriched tertiary alkanes.22 The method also
provides access to highly enantioenriched deuterated tertiary alkanes
by simply substituting H2O for D2O. The utility of the methodology
has been illustrated in a short and highly enantioselective synthesis
of (S)-turmerone.
Acknowledgment. We thank Frontier Scientific for generous
donations of organoboron compounds, the Deutsche Forschungs-
gemeinschaft (Postdoctoral Fellowship for S.N.) and the EPSRC
for support (inc. Senior Fellowship for V.K.A.). We thank Dr. Mairi
Haddow for X-ray analysis of a derivative of 6b and Prof. Jeremy
Harvey for useful discussions.
(17) Butters, M.; Harvey, J. N.; Jover, J.; Lennox, A. J. J.; Lloyd-Jones, G. C.;
Murray, P. M. Angew. Chem., Int. Ed. 2010, 49, 5156–5160.
(18) (a) The Merck Index, 12th ed.; Budavari, S., Ed.; Merck & Co.: Rahway,
NJ, 1996; pp 1674-1675. (b) Rupe, H.; Gassman, A. HelV. Chim. Acta
1936, 19, 569.
(19) (a) Meyers, A. I.; Smith, R. K. Tetrahedron Lett. 1979, 30, 2749. (b) Rowe,
B. J.; Spilling, C. D. J. Org. Chem. 2003, 68, 9502. (c) Fuganti, C.; Serra,
S.; Dulio, A. J. Chem. Soc., Perkin Trans. 1 1999, 279. (d) Zhang, A.;
Rajanbabu, T. Org. Lett. 2004, 6, 3159. (e) Kamal, A.; Malik, M.; Azeeza,
S.; Bajee, S.; Shaik, A. Tetrahedron: Asymmetry 2009, 20, 1267–1271.
(20) For details, see Supporting Information.
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
(21) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Zhendong, G. Org. Lett. 2004, 6,
3217.
(22) For alternative methods see: (a) Wilsily, A.; Nguyen, Y.; Fillion, E. J. Am.
Chem. Soc. 2009, 131, 15606–15607. (b) Lo´pez-Pe´rez, A.; Adrio, J.;
Carretero, J. C. Org. Lett. 2009, 11, 5514–5517. (c) Hedberg, C.; Kallstrom,
K.; Brandt, P.; Hansen, K.; Andersson, P. J. Am. Chem. Soc. 2006, 128,
2995–3001. (d) Roseblade, S. J.; Pfaltz, A. Acc. Chem. Res. 2007, 40, 1402–
1411. (e) Lee, Y.; Li, B.; Hoveyda, A. J. Am. Chem. Soc. 2009, 131, 11625–
11633. (f) Lee, Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.;
Hoveyda, A. J. Am. Chem. Soc. 2008, 130, 446–447. (g) Kacprzynski, M.;
Hoveyda, A. J. Am. Chem. Soc. 2004, 126, 10676–10681. (h) Langlois,
J.-B.; Alexakis, A. Chem. Commun. 2009, 3868–3870. (i) Falciola, C. A.;
Alexakis, A. Eur. J. Org. Chem. 2008, 3765–378. (j) Cui, X.; Burgess, K.
Chem. ReV. 2005, 105, 3272–3296. (k) Tolstoy, P.; Engman, M.; Patptch-
ikhine, A.; Bergquist, J.; Church, T.; Leung, A.; Andersson, P. G. J. Am.
Chem. Soc. 2009, 131, 8855–8860. (l) So¨rgel, S.; Tokunaga, N.; Sasaki,
K.; Okamoto, K.; Hayashi, T. Org. Lett. 2008, 10, 589–592. (m) Duan,
H.; Meng, L.; Bao, D.; Zhang, H.; Li, Y.; Lei, A. Angew. Chem., Int. Ed.
2010, 49, DOI: 10.1002/anie.201002116.
References
(1) (a) Matteson, D. S. Stereodirected Synthesis with Organoboranes; Springer:
Berlin, 1995. (b) Crudden, C. M.; Edwards, D. Eur. J. Org. Chem. 2003,
4695–4712.
(2) (a) Matteson, D. S. Acc. Chem. Res. 1988, 21, 294–300. (b) Matteson,
D. S. Tetrahedron 1998, 54, 10555–10607. (c) Thomas, S. P.; French,
R. M.; Jheengut, V.; Aggarwal, V. K. Chem. Rec. 2009, 9, 24–39. (d)
Aggarwal, V. K.; Fang, G. Y.; Schmidt, A. T. J. Am. Chem. Soc. 2005,
127, 1642–1643. (e) Stymiest, J.; Dutheuil, G.; Mahmood, A.; Aggarwal,
V. K. Angew. Chem., Int. Ed. 2007, 46, 7491–7494. (f) Dutheuil, G.;
Webster, M. P.; Worthington, P. A.; Aggarwal, V. K. Angew. Chem., Int.
Ed. 2009, 48, 6317–6319.
(3) (a) Brown, H. C.; Singaram, B. Pure Appl. Chem. 1987, 59, 879. (b) Science
of Synthesis: Vol. 6 Boron Compounds; Kaufmann, D. E., Matteson, D. S.,
Eds.; Georg Thieme Verlag: Stuttgart-New York, 2004. (c) Hall, D. G.
Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2005;
JA1084207
9
17098 J. AM. CHEM. SOC. VOL. 132, NO. 48, 2010