Table 1 Absolute emission quantum yields (F)a and luminescent lifetimes (tx, ms)b of Yb3+ centered emission at 980 nm for the MOFsc
d
d
FYb
t1
t2
t3
t4
Yb-PVDC-1
Yb-PVDC-2
3.3 (ꢃ0.5) ꢁ 10ꢄ3
29 (ꢃ2)
22 (ꢃ4)
10 (ꢃ1)
1.5 (ꢃ0.5)
1.7 (ꢃ0.3)
0.34 (ꢃ0.06)
0.61 (ꢃ0.17)
1.8 (ꢃ0.2) ꢁ 10ꢄ2
5.6 (ꢃ1.5)
a
b
c
d
lex = 490 nm. lex = 354 nm. MOFs as crystalline solids under chloroform. Error included in parentheses.
of the systems, we measured quantum yield values using
an integration sphere (Table 1). The quantum yield of
Yb-PVDC-2 is five times higher than Yb-PVDC-1 when
excited through the lower energy band (490 nm). The quantum
yield of Yb-PVDC-2 is among the highest values reported for
ytterbium systems under solvent.8 These quantum yields are
global: the excitation is performed through the sensitizer and
the emission is observed through the Yb3+ cations that have
different coordination environments and levels of protection in
both MOFs. In Yb-PVDC-1, the octa-coordinate Yb3+
coordinate two water molecules which quench ytterbium
emission and lower the global quantum yield.
DBI0352346, SP) for funding this work. We thank Professor
J.-C.G. Bunzli and F. Gumy for the help with the construction
¨
of an integration sphere.
Notes and references
z Crystal data. Yb-PVDC-1. C39H30O10Yb, Mw = 831.67, ortho-
rhombic, a = 16.247(6), b = 48.939(19), c = 80.84(3) A, V =
64 280(43) A3, T = 253 K, space group Fddd, Z = 32, 95 070
reflections collected, 11 506 unique (Rint = 0.1522) which were used
in all calculations. The final wR(F2) was 0.1484 (all data). Yb-PVDC-2.
C78H60O18Yb2, Mw = 1631.34, orthorhombic, a = 16.0798(14),
b = 22.7096(19), c = 38.484(3) A, V = 14 053(2) A3, T = 298 K,
space group Pnna, Z = 4, 123 644 reflections collected, 17 435 unique
(Rint = 0.0580) which were used in all calculations. The final wR(F2)
was 0.2528 (all data).
We monitored ytterbium centered luminescence lifetimes in
order to further determine the effectiveness of the MOFs in
protecting the lanthanide cations from non-radiative deactiva-
tion. Both MOFs displayed multi-exponential decay patterns
and were best fit with four components (Table 1), which are
attributed to four different lanthanide environments: the hexa-
coordinate and octa-coordinate Yb3+ sites within the core of
the MOF structures and those along the terminating edges of
the crystals, where the lanthanide cations are more exposed to
sources of non-radiative deactivation. The long component
values are up to two times longer than the longest lifetimes
reported for Yb3+ molecular species in solution.2,9 These
luminescence lifetimes demonstrate that MOFs can provide
coordination environments with improved protection from
quenching than molecular complexes.
1 J.-C. G. Bunzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048–1077.
¨
2 J. Zhang, P. D. Badger, S. J. Geib and S. Petoud, Angew. Chem.,
Int. Ed., 2005, 44, 2508–2512.
3 (a) V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka and
F. Voegtle, J. Am. Chem. Soc., 2002, 124, 6461–6468; (b) R. Van
Deun, P. Fias, P. Nockemann, K. Van Hecke, L. Van Meervelt and
K. Binnemans, Inorg. Chem., 2006, 45, 10416–10418;
(c) T. K. Ronson, T. Lazarides, H. Adams, S. J. A. Pope,
D. Sykes, S. Faulkner, S. J. Coles, M. B. Hursthouse, W. Clegg,
R. W. Harrington and M. D. Ward, Chem.–Eur. J., 2006, 12,
9299–9313; (d) T. Gunnlaugsson and F. Stomeo, Org. Biomol.
Chem., 2007, 5, 1999–2009; (e) S. Comby, D. Imbert,
A.-S. Chauvin and J.-C. G. Bunzli, Inorg. Chem., 2006, 45,
¨
732–743; (f) A. Beeby, R. S. Dickins, S. Faulkner, D. Parker and
J. A. G. Williams, Chem. Commun., 1997, 1401–1402.
4 (a) J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous
Mater., 2004, 73, 3–14; (b) B. Moulton and M. J. Zaworotko, Chem.
Rev., 2001, 101, 1629–1658; (c) D. Maspoch, D. Ruiz-Molina and
J. Veciana, Chem. Soc. Rev., 2007, 36, 770–818; (d) S. Kitagawa,
R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43,
2334–2375; (e) G. Ferey, Chem. Soc. Rev., 2008, 37, 191–214;
(f) J. A. Brant, Y. L. Liu, D. F. Sava, D. Beauchamp and
M. Eddaoudi, THEOCHEM, 2006, 796, 160–164.
We have illustrated the validity of a MOF-based approach
to sensitize NIR emitting Yb3+, which results in materials
with enhanced and controlled luminescence properties.
Specifically, we have shown that a chromophoric antenna
molecule and NIR emitting Yb3+ can be assembled into rigid
MOF structures that effectively control the coordination
environments around the lanthanide cations and the arrange-
ment of chromophoric antennae. Using this strategy, we
obtained a lower energy excitation wavelength by modifying
the three-dimensional MOF structure to allow for close p–p
interactions between the chromophores. The possibility to
have different excitation ranges without altering the structure
of the sensitizer provides a new route for controlling the
photophysical properties of lanthanide complexes, in contrast
to more traditional approaches which involve changing the
antenna’s structure. The structures of the MOFs also provide
protection of the lanthanide cations from solvent vibrations.
The ability to design MOFs and control their structural
features makes them ideal materials for carefully controlling
and optimizing the photophysical properties of lanthanide
cations.
5 (a) W. J. Rieter, K. M. L. Taylor and W. B. Lin, J. Am. Chem. Soc.,
2007, 129, 9852–9853; (b) F. Pelle, S. Surble, C. Serre, F. Millange
´ ´
and G. Ferey, J. Lumin., 2007, 122, 492–495; (c) D. T. de Lill, A. de
´
Bettencourt-Dias and C. L. Cahill, Inorg. Chem., 2007, 46,
3960–3965; (d) B. L. Chen, Y. Yang, F. Zapata, G. N. Lin,
G. D. Qian and E. B. Lobkovsky, Adv. Mater., 2007, 19,
1693–1696; (e) T. M. Reineke, M. Eddaoudi, M. O’Keeffe and
O. M. Yaghi, Angew. Chem., Int. Ed., 1999, 38, 2590–2594.
6 N. L. Rosi, J. Kim, M. Eddaoudi, B. L. Chen, M. O’Keeffe and
O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 1504–1518.
7 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112,
5525–5534.
8 (a) N. V. Rusakova, Y. V. Korovin, Z. I. Zhilina, S. V. Vodzinskii
and Y. V. Ishkov, J. Appl. Spectrosc., 2004, 71, 506–511;
(b) G. M. Davies, R. J. Aarons, G. R. Motson, J. C. Jeffery,
H. Adams, S. Faulkner and M. D. Ward, Dalton Trans., 2004,
1136–1144; (c) G. A. Hebbink, L. Grave, L. A. Woldering,
D. N. Reinhoudt and F. C. J. M. van Veggel, J. Phys. Chem. A,
2003, 107, 2483–2491.
9 (a) T. J. Foley, B. S. Harrison, A. S. Knefely, K. A. Abboud,
J. R. Reynolds, K. S. Schanze and J. M. Boncella, Inorg. Chem.,
2003, 42, 5023–5032; (b) F. R. Goncalves e Silva, O. L. Malta,
C. Reinhard, H.-U. Guedel, C. Piguet, J. E. Moser and
The authors thank the University of Pittsburgh (NLR and
SP), the ACS Petroleum Research Fund (PRF 47601-G10
NLR), and the National Science Foundation (NSF
J.-C. G. Bunzli, J. Phys. Chem. A, 2002, 106, 1670–1677.
¨
ꢂc
This journal is The Royal Society of Chemistry 2009
4508 | Chem. Commun., 2009, 4506–4508