7190
P. S. Chowdhury et al. / Tetrahedron Letters 50 (2009) 7188–7190
structure–activity relationship. Currently work is in progress in
this direction.
OTBS
16
OH OMEM
a
+
HOOC
10
Acknowledgements
O
O
O
P.S.C. and P.G. thank CSIR, New Delhi, for the award of senior
research fellowship and research associateship, respectively.
Financial support for the project (Grant No. SR/S1/OC-40/2003)
from the Department of Science & Technology, New Delhi, is grate-
fully acknowledged.‘‘
O
MEMO
MEMO
OTBS
MEMO
OTBS
18
17
b
References and notes
O
O
O
1. (a) Dräger, G.; Kirschning, A.; Thiericke, R.; Zerlin, M. Nat. Prod. Rep. 1996, 13,
365–375; (b) Collins, I. J. Chem. Soc., Perkin Trans. 1 1999, 1377–1395; (c) Longo
Júnior, L. S.; Bombonato, F. I.; Ferraz, H. M. C. Quim. Nova 2007, 30, 415–424; (d)
Riatto, V. B.; Pilli, R. A.; Victor, M. M. Tetrahedron 2008, 64, 2279–2300.
2. Grabley, S.; Granzer, E.; Hütter, K.; Ludwig, D.; Mayer, M.; Thiericke, R.; Till, G.;
Wink, J.; Philipps, S.; Zeeck, A. J. Antibiot. 1992, 45, 56–65.
c
O
OH
MEMO
OH
20
3. Göhrt, A.; Zeeck, A.; Hütter, K.; Kirsch, R.; Kluge, H.; Thiericke, R. J. Antibiot.
1992, 45, 66–73.
19
4. Grabley, S.; Hammann, P.; Hütter, K.; Kirsch, R.; Kluge, H.; Thiericke, R.; Mayer,
M.; Zeeck, A. J. Antibiot. 1992, 45, 1176–1181.
5. Yamada, S.; Tanaka, A.; Oritani, T. Biosci., Biotechnol., Biochem. 1995, 59, 1657–
1660.
O
O
e
d
O
O
6. (a) Gupta, P.; Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2004, 45, 849–851; (b)
Gupta, P.; Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2005, 46, 6571–6573; (c)
Pandey, S. K.; Kumar, P. Tetrahedron Lett. 2005, 46, 6625–6627; (d) Kumar, P.;
Naidu, S. V. J. Org. Chem. 2006, 71, 3935–3941; (e) Kumar, P.; Gupta, P.; Naidu,
S. V. Chem. Eur. J. 2006, 12, 1397–1402; (f) Pandey, S. K.; Kumar, P. Synlett 2007,
2894–2896; (g) Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2007, 48, 3793–3796;
(h) Gupta, P.; Kumar, P. Eur. J. Org. Chem. 2008, 1195–1202; (i) Pandey, S. K.;
Pandey, M.; Kumar, P. Tetrahedron Lett. 2008, 49, 3297–3299.
7. (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277,
936–938; (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K.
B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307–
1315.
8. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn.
1979, 52, 1989–1993.
9. For reviews on ring-closing metathesis see: (a) Grubbs, R. H.; Chang, S.
Tetrahedron 1998, 54, 4413–4450; (b) Prunet, J. Angew. Chem., Int. Ed. 2003, 42,
2826–2830.
MEMO
OH
MEMO
O
22
21
O
f
O
HO
O
1a
Scheme 4. Reagents and conditions: (a) 2,4,6-trichlorobenzoyl chloride, DMAP,
Et3N, THF, 0 °C–rt, 20 h, 89%; (b) TBAF, THF, 6 h, 75%; (c) (PCy3)2 Ru(Cl)2 = CH–Ph
(20 mol %), CH2Cl2, reflux, 14 h, 82%; (d) 10% Pd/C, H2 (balloon), ethanol, rt, 90%, 2 h;
(e) DMP, CH2Cl2, rt, 80%, 1 h; (f) TiCl4, CH2Cl2, 0 °C–rt, 30 min, 78%.
10. For various application of HKR in synthesis of bioactive compounds, see
review: (a) Kumar, P.; Naidu, S. V.; Gupta, P. Tetrahedron 2007, 63, 2745–2785;
Account (b) Kumar, P.; Gupta, P. Synlett 2009, 1367–1382.
11. (a) Nicolaou, K. C.; Webber, S. E. Synthesis 1986, 453–461; (b) Takao, K.; Ochiai,
H.; Yoshida, K.; Hashizuka, T.; Koshimura, H.; Tadano, K.; Ogawa, S. J. Org.
Chem. 1995, 60, 8179–8193.
12. Alcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Dong-Soo, S.;
Falck, J. R. Tetrahedron Lett. 1994, 35, 5449–5452.
13. For reviews on the Swern oxidation, see: (a) Tidwell, T. T. Synthesis 1990, 857–
870; (b) Tidwell, T. T. Org. React. 1990, 39, 297–572.
intermolecular Yamaguchi esterification protocol to afford the
diene ester 1715 in 89% yield. Ring-closing metathesis of 17 under
various conditions using Grubbs’ 1st and 2nd generation catalysts
failed to provide the required 10-membered lactone 18. In order
to circumvent the problem, we thought that it would be appropri-
ate to first remove the TBDMS group and then use the ring-clos-
ing metathesis for macrocyclisation. Thus the TBDMS group of
diene 17 was removed to give the alcohol 19 which on ring-clos-
ing metathesis by using Grubbs 1st generation catalyst furnished
the cyclised product 20 as a mixture of E/Z isomers in 82% yield.
Compound 20 was subjected to hydrogenation using 10% Pd/C to
give 2115 in 90% yield, which was oxidised using Dess–Martin
periodinane (DMP) to afford compound 22 in 80% yield. Finally
removal of the MEM group using TiCl4 afforded the target
14. Ulrike, K.; Schmidt, R. R. Synthesis 1985, 1060–1061.
15. Spectral data of 16: IR (CHCl3):
m 3310, 3078, 2856, 1714, 1642, 1515, 1361,
1091, 939, 837, 776 cmꢀ1 1H NMR (CDCl3, 200 MHz): d 5.82–5.73 (m, 1H),
;
5.09–5.06 (m, 2H), 4.20–4.16 (m, 1H), 2.53–2.43 (m, 2H), 2.30–2.28 (m, 2H),
0.87 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); 13C NMR (CDCl3, 50 MHz): d 177.2, 133.7,
118.1, 68.9, 41.9, 41.7, 25.7, 17.9,
(244.403): C, 58.97; H, 9.90. Found: C, 58.82; H, 10.08. Spectral data of 17:
¼ ꢀ36:17 (c 3.19, CHCl3), IR (CHCl3): 2926, 2855, 1735, 1647, 1463,
1258, 1096, 837, 759 cmꢀ1 1H NMR (CDCl3, 200 MHz): d 5.89–5.55 (m, 2H),
- 4.5, -4.9; Anal. Calcd for C12H24O3Si
½
a 2D5
ꢁ
m
;
5.28–5.05 (m, 4H), 5.02–4.91 (m, 1H), 4.80–4.71 (m, 1H), 4.63–4.56 (m, 1H),
4.24- 4.00 (m, 2H), 3.83–3.67 (m, 1H), 3.65–3.58 (m, 1H), 3.55- 3.46 (m, 2H),
3.35 (s, 3H), 2.48–2.38 (m, 2H), 2.02–1.83 (m, 2H), 1.79–1.69 (m, 2H), 1.18 (d,
J = 6.32 Hz, 3H), 0.84 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); 13C NMR (CDCl3,
50 MHz): d 173.4, 137.6, 134.2, 127.9, 117.6, 92.7, 74.2, 71.7, 68.7, 67.8, 58.9,
42.1, 41.9, 41.8, 25.7, 20.6, 17.9, -4.6, -4.8; Anal. Calcd for C22H42O6Si
(430.651): C, 61.36; H, 9.83. Found: C, 61.19; H, 9.97; Spectral data of 21:
compound 1a in 78% yield. ½a D25
¼ ꢀ152:4 (c 0.1, MeOH) [Ref. 5
ꢁ
½
a 2D3
ꢁ
¼ ꢀ154:0 (c 0.1, MeOH)]. The physical and spectroscopic
data of 1a were in full agreement with the literature data
(Scheme 4).5
a 2D5
ꢁ
¼ ꢀ32:92 (c 0.40, CHCl3), IR (CHCl3):
m 3459, 3015, 2932, 1729, 1462,
In conclusion, a convergent and efficient total synthesis of deca-
restrictine J with high enantioselectivities has been accomplished
in which the stereocentres were generated by means of iterative
Jacobsen’s hydrolytic kinetic resolution, and cyclisation was
achieved by ring-closing metathesis. This approach could be used
for the synthesis of other members of decarestrictine family for
½
1378, 1253, 1179, 1042 cmꢀ1 1H NMR (CDCl3, 200 MHz): d 5.11–5.02 (m, 1H),
;
4.75–4.63 (m, 2H), 4.08–3.89 (m, 1H), 3.76–3.66 (m, 2H), 3.63–3.56 (m, 1H),
3.53–3.49 (m, 2H), 3.36 (s, 3H), 2.44–2.35 (m, 2H), 1.88–1.63 (m, 2H), 1.61–
1.34 (m, 6H), 1.24 (d, J = 6.19 Hz, 3H); 13C NMR (CDCl3, 50 MHz): d 172.7, 94.7,
71.7, 68.4, 67.9, 67.3, 59.0, 42.1, 40.4, 36.4, 27.1, 20.6, 9.06; Anal. Calcd for
C14H26O6 (290.353): C, 57.91; H, 9.03. Found: C, 57.95; H, 9.19.