tripyrrole component used in previously developed bivalent
minor-major groove DNA recognition systems.9 We focused
our attention on bisamidine systems owing to their structural
simplicity and potential for installing appropriate handles for
conjugation to the peptides.10
Although the electronic donor-acceptor configuration in
the bis-4-amidinophenoxy units in 2 might provide for the
observation of DNA-promoted fluorescence changes, the
overlap between the excitation wavelength of 2 (260 nm)
and the UV absorption of the DNA precludes its selective
excitation in the presence of DNA. Therefore, we decided
to prepare the aza-analogue of propamidine, namely, N1,N3-
bis(4-amidinophenyl)propane-1,3-diamine (BAPPA, 3), fea-
turing nitrogens instead of the two oxygen atoms present in
the parent propamidine (2). We anticipated that the increased
donating character of the amines would yield a push-pull
system with longer excitation and emission wavelengths than
2, together with a higher environment-sensitive fluoroge-
nicity.11 The synthesis of 2 and 3 was carried out in a
straightforward manner using a slightly modified version of
known procedures (Scheme 1).12
Figure 1. Pentamidine (1), propamidine (2), and BAPPA (3).
stability, A/T sequence selectivity, and excellent cell transport
properties in a variety of cell lines.5 Pentamidine and other
derivatives are either in use or in clinical trials against several
parasites like P. ViVax, P. carinii pneumonia, or P. falciparum
malaria,6 and there is great interest in developing new
analogues with improved efficacies and reduced toxicity.
Curiously, most of the DNA-binding studies of such ben-
zamidines are based on measurements of the thermal
denaturation of their DNA complexes, a technique that only
gives indirect and relatively coarse information of binding
properties and is difficult to implement in high-throughput
screenings.7 Therefore, the development of simple and direct
spectroscopic methods that allow a rapid monitoring and
quantification of the DNA binding affinity and selectivity
of these compounds would be highly desirable.8
Scheme 1. Synthesis of Propamidine (2) and BAPPA (3)
Herein, we demonstrate that replacing the bis-4-amidi-
nophenoxy unit found in classic benzamidine derivatives by
a bis-4-aminobenzamidine yields propamidine analogues that
display a large fluorescence enhancement upon sequence-
specific dsDNA binding. This provides for a simple, rapid,
and reliable method to monitor and quantify their DNA
affinity and selectivity, as well as to study the binding of
other nonfluorescent minor-groove binders.8 Importantly, in
contrast to classic nuclear stains such DAPI or Hoechst, these
analogues can be very easily assembled, and their structure
allows the straightforward introduction of functional groups
oriented toward the outer side of the DNA minor groove.
This research aroused in the context of our search for a
structurally simple and easily accessible substitute for the
As expected, propamidine analogue 3 (BAPPA) shows
longer maximum excitation (329 nm) and emission (387 nm)
wavelengths than propamidine (2). Moreover, the fluores-
cence emission intensity of BAPPA displays strong sensitiv-
ity to the solvent polarity, increasing from being almost
nonfluorescent in water to displaying strong emission in
MeOH or iPrOH. Interestingly, BAPPA displays weaker
fluorescence in nonpolar solvents, and in some of them like
(6) (a) Wilson, W. D.; Tanious, F. A.; Mathis, A.; Tevis, D.; Hall, J. E.;
Boykin, D. W. Biochimie 2008, 90, 999–1014. (b) Rodr´ıguez, F.; Rozas,
I.; Kaiser, M.; Brun, R.; Nguyen, B.; Wilson, W. D.; Garc´ıa, R. N.;
Dardonville, C. J. Med. Chem. 2008, 51, 909–923. (c) Mayence, A.; Pietka,
A.; Collins, M. S.; Cushion, M. T.; Tekwani, B. L.; Huang, T. L.; Eynde,
J. J. V. Bioorg. Med. Chem. Lett. 2008, 18, 2658–2661.
(7) Wilson, W. D.; Tanious, F. A.; Fernandez-Saiz, M.; Rigl, C. T.
Methods Mol. Biol. 1997, 90, 219–240.
(8) For examples of light-off fluorescence displacement assays for
analyzing minor groove binding, see: (a) Tse, W. C.; Boger, D. L. Acc.
Chem. Res. 2004, 37, 61–69. (b) Boger, D. L.; Fink, B. E.; Brunette, S. R.;
Tse, W. C.; Hedrick, M. P. J. Am. Chem. Soc. 2001, 123, 5878–5891. (c)
Jenkins, T. C. Methods Mol. Biol. 1997, 90, 195–218.
(10) For structural information on their DNA complexes, see: (a) Nunn,
C. M.; Neidle, S. J. Med. Chem. 1995, 38, 2317–2325. (b) Nunn, C. M.;
Jenkins, T. C.; Neidle, S. Biochemistry 1993, 32, 13838–13843. (c) Edwards,
K. J.; Jenkins, T. C.; Neidle, S. Biochemistry 1992, 31, 7104–7109.
(11) For spectroscopic effects in push-pull conjugated systems: (a)
(9) (a) Va´zquez, O.; Va´zquez, M. E.; Blanco, J. B.; Castedo, L.;
Mascaren˜as, J. L. Angew. Chem., Int. Ed. 2007, 46, 6886–6890. (b) Blanco,
J. B.; Dodero, V. I.; Va´zquez, M. E.; Mosquera, M.; Castedo, L.;
Mascaren˜as, J. L. Angew. Chem., Int. Ed. 2006, 45, 8210–8214. (c) Blanco,
J. B.; Va´zquez, O.; Mart´ınez-Costas, J.; Castedo, L.; Mascaren˜as, J. L.
Chem.sEur. J. 2005, 11, 4171–4178. (d) Blanco, J. B.; Va´zquez, M. E.;
Mart´ınez-Costas, J.; Castedo, L.; Mascaren˜as, J. L. Chem. Biol. 2003, 10,
713–722. (e) Va´zquez, M. E.; Caaman˜o, A. M.; Mart´ınez-Costas, J.; Castedo,
L.; Mascaren˜as, J. L. Angew. Chem., Int. Ed. 2001, 40, 4723–4725. (f)
Blanco, J. B.; Va´zquez, M. E.; Castedo, L.; Mascaren˜as, J. L. ChemBioChem
2005, 6, 2173–2177.
ˇ
Ga´plovsky´, A.; Donovalova´, J.; Magdolen, P.; Toma, S.; Zahardn´ık, P.
Spectrochim. Acta A 2002, 58, 363–371. (b) Suzuki, K.; Demeter, A.;
Ku¨hnle, W.; Tauer, E.; Zachariasse, K. A.; Tobita, S.; Shizuka, H. Phys.
Chem. Chem. Phys. 2000, 2, 981–991.
(12) (a) Tidwell, R. R.; Jones, S. K.; Geratz, J. D.; Ohemeng, K. A.;
Cory, M.; Hall, J. E. J. Med. Chem. 1990, 33, 1252–1257. (b) Donkor,
I. O.; Huang, T. L.; Tao, B.; Rattendi, D.; Lane, S.; Vargas, M.; Goldberg,
B.; Bacchi, C. J. Med. Chem. 2003, 46, 1041–1048.
Org. Lett., Vol. 12, No. 2, 2010
217