2942
J. Duchek et al. / Tetrahedron Letters 52 (2011) 2940–2942
Scheme 3. Reagents and conditions: (a) OsO4, NMO, acetone, H2O; 93%; (b) 2,2-dimethoxypropane, p-TsOH, acetone; 85%; (c) Cp2TiMe2, toluene, reflux; 68%; (d) (1) BH3ꢀTHF,
CHCl3; (2) H2O2, NaOH, H2O, 0°; 60%; (e) Ac2O, DMAP, Et3N, CH2Cl2; 98%; (f) AcOH, H2O; (g) NaIO4, MeOH, H2O; (h) H2O2, NaClO2, NaH2PO4, CH3CN, H2O; 62% from 19.
spectrum): d 7.34–7.16 (m, 20 arom. H), 5.88–5.72 (m, overlapped with d of H–
C(1’), CH2CH@CH2), 5.75 (d, J = 3.7 Hz, H–C(1’)), 5.51 (dd, J = 5.6, 3.1 Hz, H–
C(4)), 5.16–5.04 (m, CH2CH@CH2), 4.67–4.42 (m, 8PhCH, H–C(4’)), 4.27 (br t,
Acknowledgements
We thank ETH Zürich for generous support and Dr. Bruno Ber-
net for checking the experimental data.
J = 3.7 Hz, H–C(2’)), 3.98–3.88 (m, irrad. at 2.39?change, H–C(2)), H–C(6)),
3.85 (br t, J = 5.6 Hz, irrad. 5.51?d, J = 5.0 Hz, irrad. at 3.93?change, H–C(3)),
3.79–3.73 (m, H–C(5), H–C(3’)), 3.72 (dd, J = 10.6 Hz, 5.6, Ha–C(1)), 3.67 (dd,
J = 10.6, 5.0 Hz, Hb–C(1)), 2.42 (br dd, J ꢃ 14.8, 6.8 Hz, CHaCH@CH2), 2.36 (br dd,
J ꢃ 14.9, 7.5 Hz, CHbCH@CH2), 1.57, 1.32 (2s, Me2C); 13C NMR (CDCl3, 75 MHz;
assignments based on a HSQC spectrum): d 169.68 (s, C@O), 138.40, 137.97,
137.90, 137.53 (4s), 134.30 (d, CH2CH@CH2), 128.59–127.69 (several d, arom.
CH), 117.56 (t, CH2CH@CH2), 113.67 (s, Me2C), 104.93 (d, C(1’)), 80.66 (d, C(3’)),
78.16 (d, C(2’)), 77.60 (d, C(4’)), 75.21 (d, C(5)), 74.37 (d, C(3)), 73.79 (d, C(2)),
73.44, 73.26, 72.80, 71.98 (4t, 4 PhCH2), 71.39 (d, C(6)), 71.06 (d, C(4)), 68.61 (t,
Supplementary data
Supplementary data associated with this article can be found, in
C(1)), 35.16 (t, CH2CH@CH2), 27.15, 26.76 (2q, Me2C). HR-MALDI-MS: 789.3059
References and notes
(73, [M+K]+, C45H50KO10
;
calcd 789.3041), 773.3284 (100, [M+Na]+,
þ
C
45H50NaO10þ; calcd 773.3302). Anal. calcd for C45H50O10 (750.87): C, 71.98;
1. Katoh, H.; Yamada, M.; Lida, K.; Aoki, M.; Itezono, Y.; Nakayama, N.; Suzuki, Y.;
Watanabe, M.; Shimada, H.; Fujimari, H.; Nagata, M.; Ohshima, S.; Watanabe, J.;
Kamiyama, T.; ‘Isolation and Structure Elucidation of Novel Chitin Synthase
Inhibitors, Guanofosfocins Produced by Microorganisms’, in ‘Abstracts of the
38th Symposium on the Chemistry of Natural Products, Sendai, Japan 1996,
p.115’, 1996; Kamiyama, T.; Nippon Nogeikagaku Kaishi-Journal of the Japan
Society for Bioscience Biotechnology and Agrochemistry 1997, 71, 535.
2. Sugimura, H.; Hosogai, N. Chem. Lett. 2007, 36, 36–37.
3. George, T. G.; Szolcsányi, P.; Koenig, S. G.; Paterson, D. E.; Isshiki, Y.; Vasella, A.
Helv. Chim. Acta 2004, 87, 1287–1298.
4. Xu, M.; De Giacomo, F.; Paterson, D. E.; George, T. G.; Vasella, A. Chem. Commun.
2003, 1452–1453.
5. Izumi, M.; Suhara, Y.; Ichikawa, Y. J. Org. Chem. 1998, 63, 4811–4816.
6. The origin of the stereoselectivity of analogous allylations has been discussed:
(a) Lucero, C. G.; Woerpel, K. A. J. Org. Chem. 2006, 71, 2641–2647; For
discussion of effects of individual substituents in related reactions of six-
membered oxo-carbenium ions see: (b) Ayala, L.; Lucero, C. G.; Romero, J. A. C.;
Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 15521–15528; (c)
Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2000, 122, 168–
169; (d) Miljkovic´, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L. J. Org. Chem.
1997, 62, 7597–7604; Related computational studies: (e) Winkler, D. A.; Holan,
G. J. Med. Chem. 1989, 32, 2084–2089; (f) Amat, L.; Carbó-Dorca, R. J. Chem. Inf.
Comput. Sci. 2000, 40, 1188–1198; (g) Nukada, T.; Bérces, A.; Wang, L. J.;
Zgierski, M. Z.; Whitfield, D. M. Carbohydr. Res. 2005, 340, 841–852; (h) Vasella,
A.; Davies, G. J.; Böhm, M. Curr. Opin. Chem. Biol. 2002, 6, 619–629; (i) Woods, R.
J.; Andrews, C. W.; Bowen, J. P. J. Am. Chem. Soc. 1992, 114, 859–864.
7. Rosenthal, A.; Nguyen, L. J. Org. Chem. 1969, 34, 1029–1034.
H, 6.71. Found: C, 71.95; H, 6.78. Compound 15: Yellowish oil; Rf (CHCl3/AcOEt
1:4) 0.22; IR (CHCl3): mmax 3527 (w), 3421 (w), 3362 (w), 3257 (w), 3090 (w),
3067 (w), 3034 (w), 3008 (w), 2994 (w), 2938 (w), 2872 (w), 1951 (w), 1877
(w), 1809 (w), 1758 (m), 1625 (s), 1591 (s), 1524 (w), 1496 (w), 1466 (m), 1455
(m), 1409 (m), 1385 (m), 1376 (m), 1356 (m), 1324 (m), 1268 (m), 1219 (m),
1163 (m), 1147 (m), 1091 (s), 1038 (m), 1029 (m), 991 (m), 912 (w) cmꢁ1 1H
;
NMR (CDCl3, 400 MHz; assignments based on a DQFCOSY spectrum): d 11.35
(br s, exchange with CD3OD, H–N(900)); 7.54–6.94 (m, 25 arom. H); 5.77 (d,
J = 3.5 Hz, H–C(1’)); 5.68 (br t, J ꢃ 2.5 Hz, H–C(4)); 5.54 (br s, PhCH2); 4.84 (br s,
exchange with CD3OD, NH2); 4.65–4.28 (m, 7 PhCH, H–C(4’)); 4.25 (br t,
J = 4.0 Hz, H–C(2’)); 4.19–4.13 (m, PhCH, H–C(2)); 4.08 (br t, J = 9.3 Hz, H–C(6));
3.74–3.64 (m, Ha–C(1), H–C(5), H–C(3’)); 3.53 (br s, H–C(3)); 3.39 (br d,
J ꢃ 14.6 Hz, Hb–C(1), Ha–C(7)); 2.96 (dd, J = 15.6, 9.8 Hz, Hb–C(7)); 1.57, 1.30
(2s, Me2C). 13C NMR (CDCl3, 100 MHz; assignments based on
a HSQC
spectrum): d 169.48 (s, C@O), 160.30, 158.87, 155.70 (3s, C(2’’), C(4’’), C(6’’));
148.38 (s, C(8’’)); 137.68, 137.33, 137.28, 137.19, 136.89 (5s); 130–127 (several
d); 114.89 (s, C(5’’)); 113.65 (s, Me2C); 105.15 (d, C(1’)); 80.68 (d, C(3’)); 77.77
(d, C(2’)); 77.23 (d, C(4’)); 74.81 (d, C(3)); 74.42 (d, C(2)); 74.34 (d, C(5)); 73.16,
72.68, 72.47, 72.07 (4t, 4 PhCH2); 68.25 (d, C(6)); 67.93 (t, PhCH2); 67.26 (d,
C(4)); 66.64 (t, C(1)); 31.49 (t, C(7)); 27.17, 26.78 (2q, Me2C). HR-MALDI-MS:
1024.363 (4, [MꢁH+K+Na]+, C55H56KN5NaO11þ; calcd 1024.3511), 1008.386
(24, [MꢁH+2Na]+, C55H56N5Na2O11þ; calcd 1008.3772), 1002.378 (21, [M+K]+,
C
55H57KN5O11þ; calcd 1002.3692), 986.3976 (73, [M+Na]+, C55H57N5NaO
;
þ
calcd 986.3952); 964.4109 (100, [M+H]+, C55H58N5O11
;
calcd 964.411313).
þ
Compound 20 (mixture of 2 diastereoisomers): Colourless gum; IR (CHCl3):
max 2962 (w), 1740 (m), 1494 (m), 1454 (w), 1371 (m), 1259 (s), 1092 (s), 1026
(s) cmꢁ1 1H NMR (CDCl3, 300 MHz):
7.38–7.12 (m, arom. H), 5.76 (d,
m
;
d
8. (a) Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567–569; (b) Dhavale, D.
D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1989, 54, 4100–
4105.
J = 3.7 Hz), 5.62 (dd, J = 3.4, 3.8 Hz), 5.57 (d, J = 3.6 Hz), 5.22 (d, J = 3.7 Hz), 4.70–
4.41 (m), 4.32–3.99 (m), 3.92–3.60 (m,), 3.51 (dd, J = 3.9, 10.6 Hz), 2.77–2.50
(m), 1.93 (s), 1.80 (s), 1.59 (s,), 1.55 (s), 1.33 (s), 1.21 (s); 13C NMR (CDCl3, 75 M)
9. (a) Lohri, B. ‘Dissertation No. 5783’, ETH Zürich, 1976.; (b) Baker, D. C.; Horton,
D.; Tindall, C. G. Carbohydr. Res. 1972, 24, 192–197.
d
171.02, 170.44, 169.48, 137.79, 137.51, 137.30, 129.09, 128.57, 128.55,
128.51, 128.46, 128.41, 128.38, 128.36, 128.22, 128.20, 128.16, 128.13, 127.94,
127.92, 127.88, 127.82, 127.78, 127.70, 127.03, 113.00, 112.61, 104.09, 77.54,
77.41, 77.12, 76.95, 76.86, 76.69, 76.26, 75.97, 73.30, 71.85, 71.46, 67.85, 63.95,
63.57, 36.61, 27.07, 26.87, 26.67, 26.19, 21.51, 20.91, 20.71; HR-MALDI-MS:
849.3475 ([M+Na]+, C47H54NaO13þ; calcd 849.3462); 871.3288 [MꢁH+2Na]+,
10. All compounds gave satisfactory analytical data (1H NMR, 13C NMR, IR, and
elemental analysis or HR-MS). Data of key compounds follow. Compound 11:
Colourless oil; Rf (cyclohexane/AcOEt 5:1) 0.17; ½a D25
ꢂ
+30.2 (c 1.15, CHCl3); IR
(CHCl3): mmax 3088 (w), 3067 (w), 3033 (w), 3010 (m), 2937 (w), 2871 (w),
1951 (w), 1873 (w), 1810 (w), 1752 (m), 1642 (w), 1606 (w), 1586 (w), 1496
(w), 1454 (m), 1384 (m), 1375 (m), 1219 (m), 1163 (m), 1094 (s), 1029 (s), 917
C
47H53Na2O13þ; calcd 871.3282).
(w) cmꢁ1 1H NMR (CDCl3, 300 MHz; assignments based on
; a DQFCOSY