ChemComm
Communication
7 P. S.-W. Leung, Y. Teng and P. H. Toy, Synlett, 2010, 1997.
8 J.-J. Cao, F. Zhou and J. Zhou, Angew. Chem., Int. Ed., 2010, 49, 4976.
¨
9 A. G. M. Barrett, R. S. Roberts and J. Schroder, Org. Lett., 2000,
2, 2999.
10 For example, Lambert has reported a cyclopropenone-catalysed
alcohol inversion protocol, see: E. D. Nacsa and T. H. Lambert,
Org. Lett., 2013, 15, 38; a catalytic chlorination reaction has also
been developed, see: C. M. Vanos and T. H. Lambert, Angew. Chem.,
Int. Ed., 2011, 52, 4524.
11 (a) T. Y. S. But and P. H. Toy, J. Am. Chem. Soc., 2006, 128, 9636;
(b) T. Y. S. But, J. Lu and P. H. Toy, Synlett, 2010, 1115.
12 D. Hirose, T. Taniguchi and H. Ishibashi, Angew. Chem., Int. Ed.,
2013, 52, 4613.
13 For a review on catalytic variants of phosphorus(V)-mediated reac-
tions, see: S. P. Marsden, in Sustainable Catalysis: Challenges and
Practices for the Pharmaceutical and Fine Chemical Industries, ed.
P. J. Dunn and K. K. Hii, Wiley, New York, 2013, p. 339.
14 A range of catalytic phosphorous-based reactions have been achieved
using silane-mediated reductive turnover, see: (a) C. J. O’Brien, J. L. Tellez,
Z. S. Nixon, L. J. Kang, A. L. Carter, S. R. Kunkel, K. C. Przeworski and
C. G. Chass, Angew. Chem., Int. Ed., 2009, 48, 6836; (b) H. A. van Kalkeren,
S. H. A. M. Leenders, C. R. A. Hommersom, F. P. J. T. Rutjes and F. L. van
Delft, Chem. – Eur. J., 2011, 17, 11290; (c) H. A. van Kalkeren, J. J. Bruins,
F. P. J. T. Rutjes and F. L. van Delft, Adv. Synth. Catal., 2012, 354, 1417;
(d) A. D. Kosal, E. E. Wilson and B. L. Ashfeld, Angew. Chem., Int. Ed.,
2012, 124, 12202; (e) J. R. Harris, M. T. Haynes II, A. M. Thomas and
K. A. Woerpel, J. Org. Chem., 2010, 75, 5083; ( f ) H. A. van Kalkeren, C. Te
Grotenhuis, F. S. Haasjes, C. A. Hommersom, F. P. J. T. Rutjes and
F. L. van Delft, Eur. J. Org. Chem., 2013, 7059; (g) C. J. O’Brien, Z. S. Nixon,
A. J. Holohan, S. R. Kunkel, J. L. Tellez, B. J. Doonan, E. E. Coyle,
F. Lavinge, L. J. Kang and K. C. Przeworski, Chem. – Eur. J., 2013,
19, 15281; (h) C. J. O’Brien, F. Lavinge, E. E. Coyle, A. J. Holohan and
B. J. Doonan, Chem. – Eur. J., 2013, 19, 5854.
15 For two recent approaches to silane-based catalytic phosphine oxide
reduction, see: (a) Y. Li, S. Das, S. Zhou, K. Junge and M. Beller,
J. Am. Chem. Soc., 2012, 134, 9727; (b) Y. Li, L.-Q. Lu, S. Das,
S. Pisiewicz, K. Junge and M. Beller, J. Am. Chem. Soc., 2012,
134, 18325.
16 The concept of redox-neutral phosphorus(V)-based reactions was
first demonstrated by Marsden in the context of the first catalytic
aza-Wittig reaction, see: A. E. McGonagle, S. P. Marsden and
B. McKever-Abbas, Org. Lett., 2008, 10, 2589.
17 We have also exploited this concept to develop a catalytic platform
for Appel halogenations, see: (a) R. M. Denton, A. Jie and
B. Adeniran, Chem. Commun., 2010, 46, 3025; (b) R. M. Denton,
X. Tang and A. Przeslak, Org. Lett., 2010, 12, 4678; (c) R. M. Denton,
A. Jie, B. Adeniran, A. Blake, W. Lewis and A. Poulton, J. Org. Chem.,
2011, 76, 6749; (d) R. M. Denton, A. Jie, P. Lindovska and W. Lewis,
Tetrahedron, 2012, 68, 2899; (e) A. Jie, X. Tang, J. Moore, W. Lewis
and R. M. Denton, Tetrahedron, 2013, 69, 8769. This strategy has
also been used by Xu for catalytic 1,3-dichlorination reactions, see:
( f ) T.-Y. Yu, Y. Wang and P.-F. Xu, Chem. – Eur. J., 2014, 20, 98.
18 (a) H. Kunz and P. Schmidt, Chem. Ber., 1979, 112, 3886;
(b) K. E. Elson, I. D. Jenkins and W. A. Loughlin, Org. Biomol. Chem.,
2003, 1, 2958.
19 (a) F. Ramirez and N. B. Desai, J. Am. Chem. Soc., 1960, 82, 2652;
(b) F. Ramirez and N. B. Desai, J. Am. Chem. Soc., 1963, 85, 3252;
(c) Ramirez in ‘‘Organophosphorus Compounds,’’ International
Symposium, Heidelberg, 1964, IUPAC, Butterworth and Co., Ltd.,
London, 1964, pp 337–369; (d) F. Ramirez and N. Ramanathan,
J. Org. Chem., 1961, 26, 3041; (e) F. Ramirez, N. Ramanathan and
N. B. Desai, J. Am. Chem. Soc., 1963, 85, 3465; ( f ) F. Ramirez,
N. Ramanathan and N. B. Desai, J. Am. Chem. Soc., 1962, 84, 1317;
(g) F. Ramirez, A. V. Patwardhan, N. B. Desai, N. Ramanathan and
C. V. Greco, J. Am. Chem. Soc., 1963, 85, 3056; (h) F. Ramirez,
A. V. Patwardhan, N. Ramanathan, N. B. Desai, C. V. Greco and
S. R. Heller, J. Am. Chem. Soc., 1965, 87, 549; (i) F. Ramirez,
S. B. Bhatia and C. P. Smith, Tetrahedron, 1967, 23, 2067;
( j) F. Ramirez, S. B. Bhatia, A. V. Patwardhan and C. P. Smith,
J. Org. Chem., 1967, 32, 2194; (k) F. Ramirez, M. Nagabhushanam
and C. P. Smith, Tetrahedron, 1968, 24, 1785; for a review, see:
F. Ramirez, Acc. Chem. Res., 1968, 1, 168.
Scheme 4 Multinuclear NMR study.
the afford ester product with inversion of configuration with
concomitant generation of triphenylphosphine oxide.
In summary we have developed for the first time a redox-free
approach to Mitsunobu inversion reactions that relies upon acces-
sing the Ishikawa phosphorane 3 from triphenylphosphine oxide.
This new protocol eliminates the need for diazo-based
oxidants and, given that reagent 3 is also known to promote
C–N, C–S and other cyclodehydration reactions,22 opens up a
wide range of other useful Mitsunobu-type reactions that will
not require the addition of an external oxidant. Furthermore,
since triphenylphosphine oxide is used to prepare the coupling
reagent no net phosphorus waste is generated.
Notes and references
1 (a) T. Mukaiyama, I. Kuwajima and Z. Suzuki, J. Org. Chem., 1963,
28, 2024; for review, see: (b) T. Mukaiyama, Angew. Chem., Int. Ed.,
2004, 43, 5590.
2 (a) O. Mistunobu and M. Yamada, Bull. Chem. Soc. Jpn., 1967,
40, 2380; (b) O. Mitsunobu and M. Eguchi, Bull. Chem. Soc. Jpn.,
1971, 44, 3427; for reviews, see: (c) O. Mitsunobu, Synthesis, 1981, 1;
(d) D. L. Hughes, in Organic Reactions, ed. L. A. Paquette, Wiley,
New York, 1992, vol. 42, p. 335; (e) K. C. K. Swamy, N. N. B. Kumar,
E. Balaraman and K. V. P. P. Kumar, Chem. Rev., 2009, 109, 2551;
( f ) D. L. Hughes, Org. React., 1992, 42, 335; D. L. Hughes, Org. Prep.
Proced. Int., 1996, 28, 127; (g) R. Dembinski, Eur. J. Org. Chem., 2004,
2763; (h) T. Y. S. But and P. H. Toy, Chem. – Asian J., 2007, 2, 1340.
3 For a review on lesser-known enabling technologies in synthesis,
including tagged reagents and phase switching, see: M. O’Brien,
R. M. Denton and S. V. Ley, Synthesis, 2011, 1157.
4 C. D. Smith, I. R. Baxendale, G. K. Tranmer, M. Bauman, S. C. Smith,
R. A. Lewthwaite and S. V. Ley, Org. Biomol. Chem., 2007, 5, 1562.
5 (a) S. Dandapani and D. P. Curran, Tetrahedron, 2002, 58, 3855; for a
review on the use of fluorous reagents, see: (b) D. P. Curran, Angew.
Chem., Int. Ed., 1998, 37, 1174; for a more recent review, see:
(c) A. P. Dobbs and M. R. Kimberly, J. Fluorine Chem., 2002, 118, 3.
6 J.-C. Poupon, A. A. Boezio and A. B. Charette, Angew. Chem., Int. Ed., 20 (a) D. B. Denney and H. M. Relles, J. Am. Chem. Soc., 1964, 86, 3897;
2006, 45, 1415.
(b) D. B. Denney and S. T. D. Gough, J. Am. Chem. Soc., 1965, 87, 138;
7342 | Chem. Commun., 2014, 50, 7340--7343
This journal is ©The Royal Society of Chemistry 2014