ꢀ
Liegault et al.
JOCFeatured Article
for (illustrative compounds are included in Scheme 2).9-16
For example, while thiazole C5 direct arylation readily
occurs, achieving direct arylation at the least reactive
C4 position, even in the absence of C4/C5 regioselectivity
issues,3a,l,t is exceedingly rare. In a similar fashion, the
inherent bias for reaction of benzothiophenes and benzofur-
ans atC2 makes this approach problematic when C3arylation
is desired.17,18 For direct arylation to continue to grow as a
synthetic tool in the preparation of biaryl molecules, strategies
that overcome these limitations must be established.
SCHEME 3. Palladium-Catalyzed Direct Arylation of Chlorine-
Containing Heteroaromatics
Herein we describe a solution to several regiochemical
limitations in palladium(0)-catalyzed direct arylation, with a
wide range of heteroaromatic coupling partners, that should
have broader implications as a general synthetic strategy. We
have found that a chlorine atom on the heterocycle not only
improves reactivity but also diverts typical direct arylation
regioselectivity to obtain previously inaccessible direct
arylation outcomes (Scheme 3).19 In this way, the C-Cl
bond becomes an invaluable handle for modulating reacti-
vity, manipulating site selectivity, and greatly expanding
the breadth of potential target compounds that may be
accessible via this approach. From a synthetic perspective,
the use of a chlorine substituent in this role is particularly
useful since C-Cl bonds are typically very easily introduced
on aromatic substrates and may be easily removed or
transformed into a wide range of functional groups via
well-established methods.20 Of equal importance, this chem-
istry has strong mechanistic implications on the nature of
the C-H bond cleavage step21 in palladium-catalyzed
direct arylation. The ability of a non-SEAr,22 concerted
metalation-deprotonation (CMD) pathway23-25 to accu-
rately account for this reactivity and selectivity is supported
by experimental and computational methods.
Results and Discussion
1. Use of a Chlorine Substituent to Improve/Induce Regio-
selectivity. When palladium-catalyzed direct arylation is em-
ployed with substrates possessing two nonidentical reactive
sites, low regioselectivities frequently occur. For example,
(9) (a) Hayakawa, I.; Agatsuma, T.; Furukawa, H.; Kurakata, S.; Naruto, S.
PCT Int. Appl. WO 2002034748, 2002. (b) Lee, J.; Wu, X.; di Magliano, M. P.;
Peters, E. C.; Wang, Y.; Hong, J.; Hebrok, M.; Ding, S.; Cho, C. Y.; Schultz, P. G.
ChemBioChem 2007, 8, 1916–1919. (c) Cupido, T.; Rack, P. G.; Firestone, A. J.;
Hyman, J. M.; Han, K.; Sinha, S.; Ocasio, C. A.; Chen, J. K. Angew. Chem., Int.
Ed. 2009, 48, 2321–2324.
(10) (a) Fuller, A. T. Nature 1955, 175, 722. (b) Lefranc, D.; Ciufolini,
M. A. Angew. Chem., Int. Ed. 2009, 48, 4198–4201. For reviews on
thiopeptide antibiotics, see: (c) Bagley, M. C.; Dale, J. W.; Merritt, E. A.;
Xiong, X. Chem. Rev. 2005, 105, 685–714. (d) Hughes, R. A.; Moody, C. J.
Angew. Chem., Int. Ed. 2007, 46, 7930–7954.
(21) For a review on the proposed mechanisms of transition metal-
mediated C-H bond cleavage, see: Boutadla, Y.; Davies, D. L.; Macgregor,
S. A.; Poblador-Bahamondeb, A. I. Dalton Trans. 2009, 5820–5831.
(22) For direct arylation reactions where an SEAr pathway has been
proposed, see: (a) Catellani, M.; Chiusoli, P. J. Organomet. Chem. 1992, 425,
ꢀ
ꢀ
151–154. (b) Gonzalez, J. J.; Garcıa, N.; Gomez-Lor, B.; Echavarren, A. M.
J. Org. Chem. 1997, 62, 1286–1291. (c) Pivsa-Art, S.; Satoh, T.; Kawamura,
Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467–473. (d)
ꢀ
Martın-Matute, B.; Mateo, C.; Cardenas, D. J.; Echavarren, A. M. Chem.;
(11) Hollick, J. J.; Rigoreau, L. J. M.; Cano-Soumillac, C.; Cockcroft, X.;
Curtin, N. J.; Frigerio, M.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.;
Hickson, I.; Hummersone, M. G.; Menear, K. A.; Martin, N. M. B.;
Matthews, I.; Newell, D. R.; Ord, R.; Richardson, C. J.; Smith, G. C. M.;
Griffin, R. J. J. Med. Chem. 2007, 50, 1958–1972.
(12) Mathvink, R. J.; Tolman, J. S.; Chitty, D.; Candelore, M. R.;
Cascieri, M. A.; Colwell, L. F. Jr.; Deng, L.; Feeney, W. P.; Forrest, M. J.;
Hom, G. J.; MacIntyre, D. E.; Miller, R. R.; Stearns, R. A.; Tota, L.;
Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. J. Med. Chem. 2000, 43, 3832–
3836.
(13) Cummings, C. G.; Ross, N. T.; Katt, W. P.; Hamilton, A. D. Org.
Lett. 2009, 11, 25–28.
(14) Okamoto, Y.; Ojika, M.; Suzuki, S.; Murakamib, M.; Sakagami, Y.
Bioorg. Med. Chem. 2001, 9, 179–183.
(15) Qu, W.; Kung, M.-P.; Hou, C.; Oya, S.; Kung, H. F. J. Med. Chem.
2007, 50, 3380–3387.
(16) Kim, J.-J.; Choi, H.; Lee, J.-W.; Kang, M.-S.; Song, K.; Kang, S. O.;
Ko, J. J. Mater. Chem. 2008, 18, 5223–5229.
(17) For selected methods developed for the synthesis of 3-arylbenzothio-
phenes, see: (a) Heynderickx, A.; Samat, A.; Guglielmetti, R. Synthesis 2002,
213–216. (b) Yoshida, S.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9,
5573–5576. (c) Inamoto, K.; Arai, Y.; Hiroya, K.; Doi, T. Chem. Commun.
2008, 5529–5531. (d) Aoyama, T.; Orito, M.; Takido, T.; Kodomari, M.
Synthesis 2008, 2089–2099. (e) Kobayashi, K.; Horiuchi, M.; Fukamachi, S.;
Konishi, H. Tetrahedron 2009, 65, 2430–2435.
(18) For selected methods developed for the synthesis of 3-arylbenzofur-
ans, see: (a) Cardillo, B.; Cornia, M.; Merlini, L. Gazz. Chim. Ital. 1975, 105,
1151–1163. (b) Habermann, J.; Ley, S. V.; Smits, R. J. Chem. Soc., Perkin
Trans. 1 1999, 2421–2423. (c) Nicolaou, K. C.; Snyder, S. A.; Bigot, A.;
Pfefferkorn, J. A. Angew. Chem., Int. Ed. 2000, 39, 1093–1096. (d) Kraus,
G. A.; Schroeder, J. D. Synlett 2005, 2504–2506. (e) Liu, G.; Lu, X.
Tetrahedron 2008, 64, 7324–7330.
(19) For examples employing halothiophenes without a change of direct
arylation regioselectivity, see refs 3d and 3v. Such substrates have also been
used in copper-catalyzed processes, see refs 4f and 4i.
(20) For a review on palladium-catalyzed coupling reactions of aryl
chlorides, see: Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
4176–4211.
Eur. J. 2001, 7, 2341–2348. (e) Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner,
R. S.; Javadi, G. J.; Cai, D.; Larsen, R. D. Org. Lett. 2003, 5, 4835–4837. (f)
Iwasaki, M.; Yorimitsu, H.; Oshima, K. Chem. Asian J. 2007, 2, 1430–1435.
See also refs 3b, 3c, and 3e-g.
(23) For direct arylation reactions where a CMD pathway has been
proposed, see: (a) Mota, A. J.; Dedieu, A.; Bour, C.; Suffert, J. J. Am.
Chem. Soc. 2005, 127, 7171–7182. (b) Garcia-Cuadrado, D.; Braga, A. A. C.;
Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066–1067. (c)
Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc.
2006, 128, 8754–8756. (d) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006,
128, 16496–16497. (e) Garcia-Cuadrado, D.; de Mendoza, P.; Braga, A. A.
C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880–6886.
(f) Lafrance, M.; Lapointe, D.; Fagnou, K. Tetrahedron 2008, 64, 6015–6020.
(g) Pascual, S.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren,
A. M. Tetrahedron 2008, 64, 6021–6029. (h) Ackermann, L.; Vicente, R.;
Althammer, A. Org. Lett. 2008, 10, 2299–2302. (i) Gorelsky, S. I.; Lapointe,
€
D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848–10849. (j) Ozdemir, I.;
Demir, S.; C-etinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.;
Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156–1157. See also ref 3q.
(24) For alkane arylation reactions where a CMD pathway has been
proposed, see: (a) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem.
Soc. 2007, 129, 14570–14571. (b) Chaumontet, M.; Piccardi, R.; Audic, N.;
Hitce, J.; Peglion, J.-L.; Clot, E.; Baudoin, O. J. Am. Chem. Soc. 2008, 130,
15157–15166.
(25) One of the first instances where a CMD-type mechanism was
proposed in a C-H bond cleaving event by a palladium species was reported
by Ryabov and co-workers in the ortho-palladation of benzylamines. See:
(a) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Chem.
Soc., Dalton Trans. 1985, 2629–2638. However, concerted metalation-
deprotonation events were also proposed with other metals in prior reports.
For selected examples, see: (b) Winstein, S.; Traylor, T. G. J. Am. Chem. Soc.
1955, 77, 3747–3752. (c) De La Mare, P. B. D.; Hilton, I. C.; Varma, S.
J. Chem. Soc. 1960, 4044–4054. (d) Kresge, A. J.; Brenna, J. F. J. Am. Chem.
Soc. 1967, 32, 752–755. (e) Deeming, A. J.; Rothwell, I. P. Pure Appl. Chem.
1980, 52, 649–655. For more recent mechanistic studies, see: (f) Biswas, B.;
Sugimoto, M.; Sakaki, S. Organometallics 2000, 19, 3895–3908. (g) Davies,
D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127,
13754–13755.
J. Org. Chem. Vol. 75, No. 4, 2010 1049