Shi et al. Sci China Chem June (2015) Vol.58 No.6
5
Ed, 2009, 48: 3146–3149; e) Tang BX, Song RJ, Wu CY, Liu Y,
Zhou MB, Wei WT, Deng GB, Yin DL, Li JH. Copper-catalyzed in-
tramolecular C–H oxidation/acylation of formyl-N-arylformamides
leading to indoline-2,3-diones. J Am Chem Soc, 2010, 132: 8900–
8902
Abboud KA, Castellano RK. Synthesis, photophysical behavior, and
electronic structure of push-pull purines. J Am Chem Soc, 2009, 131:
623–633
8
a) Čerňa I, Pohl R, Klepetářová B, Hocek M. Direct C–H arylation of
purines: development of methodology and its use in regioselective
synthesis of 2,6,8-trisubstituted purines. Org Lett, 2006, 8:
5389–5392; b) Storr TE, Baumann CG, Thatcher RJ, Ornellas SD,
Whitwood AC, Fairlamb IJS. Pd(0)/Cu(I)-mediated direct arylation
of 2′-deoxyadenosines: mechanistic role of Cu(I) and reactivity
comparisons with related purine nucleosides. J Org Chem, 2009, 74:
5810–5821; c) Čerňa I, Pohl R, Klepetářová B, Hocek M.
Intramolecular direct C–H arylation approach to fused purines.
synthesis of purino[8,9-f]phenanthridines and 5,6-dihydropurino[8,9-
a]isoquinolines. J Org Chem, 2010, 75: 2302–2308; d) Liu B, Qin
XR, Li KZ, Li XY, Guo Q, Lan JB, You JS. A palladium/copper bi-
metallic catalytic system: dramatic improvement for Suzuki-Miyaura-
type direct C–H arylation of azoles with arylboronic acids. Chem Eur
J, 2010, 16: 11836–11839
4
5
Spiller GA. Caffeine. Boca Raton: CRC Press, 1998
Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo
F, Zaid NA, Moorman AR, Varani K, Gessi S, Merighi S, Borea PA.
Design, synthesis, and biological evaluation of new 8-heterocyclic
xanthine derivatives as highly potent and selective human A2B adeno-
sine receptor antagonists. J Med Chem, 2004, 47: 1434–1447
a) Xi PH, Yang F, Qin S, Zhao DB, Lan JB, Gao G, Hu CW, You JS.
Palladium(II)-catalyzed oxidative C–H/C–H cross-coupling of het-
eroarenes. J Am Chem Soc, 2010, 132: 1822–1824; b) Wang Z, Li KZ,
Zhao DB, Lan JB, You JS. Palladium-catalyzed oxidative C–H/C–H
cross-coupling of indoles and pyrroles with heteroarenes. Angew
Chem Int Ed, 2011, 50: 5365–5369; c) Dong JX, Huang YM, Qin XR,
Cheng YY, Hao J, Wan DY, Li W, Liu XY, You JS. Palladi-
um(II)-catalyzed oxidative C–H/C–H cross-coupling between two
structurally similar azoles. Chem Eur J, 2012, 18: 6158–6162; d)
Wang Z, Song FJ, Zhao YS, Huang YM, Yang L, Zhao DB, Lan JB,
You JS. Elements of regiocontrol in the direct heteroarylation of in-
doles/pyrroles: synthesis of bi- and fused polycyclic heteroarenes by
twofold or tandem fourfold C–H activation. Chem Eur J, 2012, 18:
16616–16620; e) Qin XR, Liu H, Qin DK, Wu Q, You JS, Zhao DB,
Guo Q, Huang XL, Lan JB. Chelation-assisted Rh(III)-catalyzed
C2-selective oxidative C–H/C–H cross-coupling of indoles/pyrroles
with arenes. Chem Sci, 2013, 4: 1964–1969; f) Liu B, Huang YM,
Lan JB, Song FJ, You JS. Pd-catalyzed oxidative C–H/C–H cross-
coupling of pyridines with heteroarenes. Chem Sci, 2013, 4: 2163–
2167; g) Dong JX, Long Z, Song FJ, Wu NJ, Guo Q, Lan JB, You JS.
Rhodium or ruthenium-catalyzed oxidative C–H/C–H cross-coupling:
direct access to extended -conjugated systems. Angew Chem Int Ed,
2013, 52: 580–584
6
9
a) Liu B, Wang Z, Wu NJ, Li ML, You JS, Lan JB. Discovery of a
full-color-tunable fluorescent core framework through direct C–H
(hetero)arylation of N-heterocycles. Chem Eur J, 2012, 18: 1599–
1603; b) Sharma V, Kumar V. Indolizine: a biologically active moie-
ty. Med Chem Res, 2014, 23: 3593–3606
10 a) Henry GD. De novo synthesis of substituted pyridines. Tetrahe-
dron, 2004, 60: 6043–6061; b) Michael JP. Quinoline, quinazoline
and acridone alkaloids. Nat Prod Rep, 2005, 22: 627–646; c) Carey
JS, Laffan D, Thomson C, Williams MT. Analysis of the reactions
used for the preparation of drug candidate molecules. Org Biomol
Chem, 2006, 4: 2337–2347; d) Schlosser M, Mongin F. Pyridine
elaboration through organometallic intermediates: regiochemical
control and completeness. Chem Soc Rev, 2007, 36: 1161–1172
11 a) Campeau LC, Rousseaux S, Fagnou K. A solution to the 2-pyridyl
organometallic cross-coupling problem: regioselective catalytic direct
arylation of pyridine N-oxides. J Am Chem Soc, 2005, 127: 18020–
18021; b) Leclerc JP, Fagnou K. Palladium-catalyzed cross-coupling
reactions of diazine N-oxides with aryl chlorides, bromides, and io-
dides. Angew Chem Int Ed, 2006, 45: 7781–7786; c) Cho SH, Hwang
SJ, Chang S. Palladium-catalyzed C–H functionalization of pyridine
N-oxides: highly selective alkenylation and direct arylation with un-
activated arenes. J Am Chem Soc, 2008, 130: 9254–9256
7
a) Sivakova S, Rowan SJ. Nucleobases as supramolecular motifs.
Chem Soc Rev, 2005, 34: 9–21; b) Davis JT, Spada GP. Supramolec-
ular architectures generated by self-assembly of guanosine deriva-
tives. Chem Soc Rev, 2007, 36: 296–313; c) Sessler JL, Lawrence
CM, Jayawickramarajah J. Molecular recognition via base-pairing.
Chem Soc Rev, 2007, 36: 314–325; d) Butler RS, Cohn P, Tenzel P,