pubs.acs.org/joc
SCHEME 1. Selected Biologically Active Diaryl Ethers
Cu-Catalyzed Arylation of Phenols: Synthesis of
Sterically Hindered and Heteroaryl Diaryl Ethers
Debabrata Maiti and Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139
Received December 21, 2009
family of antibiotics.11 There has been recent interest in the
synthesis of atropisomeric diaryl ethers12,13 as these may
have application as molecular gears.14
Cu-catalyzed O-arylation of phenols with aryl iodides
and bromides can be performed under mild condition in
DMSO/K3PO4 with use of picolinic acid as the ligand for
copper. This method tolerates a variety of functional
groups and is effective in the synthesis of hindered diaryl
ethers and heteroaryl ethers.
Diaryl ethers are classically made by the Ullmann reac-
tion15 of phenols with aryl halides promoted by stoichio-
metric or greater quantities of copper at high temperatures
(125-300 °C) in polar solvents (typically pyridine or DMF),
conditions which are unsuitable for the construction of
complex molecules.16-21
In an important advance, Lam,22 Chan,23 and Evans24
developed the Cu-catalyzed coupling of arylboronic acids
with phenols.16,25 The ability to use stable, and in some cases
commercially available, boronic acids in these reactions was
a considerable step forward and these reactions have been
applied in the synthesis of a number of complex natural
products.16,19 Despite the advantages of this method a
number of limitations remain, typically an excess of the
boronic acid component is required for optimal yields and
the use of heterocyclic substrates and ortho-substituted
coupling partners in intermolecular reactions is rare.
Furthermore, the required boronic acids, when commer-
cially available, can be expensive. The diaryl ether linkage
can also be forged by an SNAr reaction between a phenol and
The diaryl ether linkage is present in a range of impor-
tant compounds including a number of potential pharma-
ceuticals,1-4 commercially available engineering thermo-
plastics,5,6 and herbicides (Scheme 1).7-9 This motif also
appears in biologically active natural products, notably in
the mammalian hormone thyroxine10 and the vancomycin
(1) Hodous, B. L.; Geuns-Meyer, S. D.; Hughes, P. E.; Albrecht, B. K.;
Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V. J.; Chaffee, S. C.; Coxon, A.;
Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R. E.;
Kendall, R.; Kim, J. L.; Long, A. M.; Morrison, M.; Olivieri, P. R.; Patel,
V. F.; Polverino, A.; Rose, P.; Tempest, P.; Wang, L.; Whittington, D. A.;
Zhao, H. L. J. Med. Chem. 2007, 50, 611–626.
(2) Caron, S.; Do, N. M.; Sieser, J. E.; Whritenour, D. C.; Hill, P. D. Org.
Process Res. Dev. 2009, 13, 324–330.
(3) Liu, L. B.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Cheti, A.;
Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.; Teffera, Y.; Yang, Y. I.; Zhang,
Y. H.; Bellon, S. F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.;
Norman, M. H.; Harmange, J. C.; Dussault, I.; Kimt, T. S. J. Med. Chem.
2008, 51, 3688–3691.
(4) Wada, C. K.; Holms, J. H.; Curtin, M. L.; Dai, Y.; Florjancic, A. S.;
Garland, R. B.; Guo, Y.; Heyman, H. R.; Stacey, J. R.; Steinman, D. H.;
Albert, D. H.; Bouska, J. J.; Elmore, I. N.; Goodfellow, C. L.; Marcotte,
P. A.; Tapang, P.; Morgan, D. W.; Michaelides, M. R.; Davidsen, S. K.
J. Med. Chem. 2002, 45, 219–232.
(5) Laskoski, M.; Dominguez, D. D.; Keller, T. M. J. Polym. Sci., Part A:
Polym. Chem. 2006, 44, 4559–4565.
(6) Labadie, J. W.; Hedrick, J. L.; Ueda, M. Am. Chem. Soc. Symp. Ser.
1996, 624, 210.
(7) Draper, W. M.; Casida, J. E. J. Agric. Food Chem. 1983, 31, 227–231.
(8) Draper, W. M.; Casida, J. E. J. Agric. Food Chem. 1983, 31, 1201–
1207.
(9) Scrano, L.; Bufo, S. A.; D’Auria, M.; Meallier, P.; Behechti, A.;
Shramm, K. W. J. Environ. Qual. 2002, 31, 268–274.
(12) Betson, M. S.; Clayden, J.; Worrall, C. R.; Peace, S. Angew. Chem.,
Int. Ed. 2006, 45, 5803–5807.
(13) Clayden, J.; Worrall, C. P.; Moran, W. J.; Helliwell, M. Angew.
Chem., Int. Ed. 2008, 47, 3234–3237.
(14) Fuji, K.; Oka, T.; Kawabata, T.; Kinoshita, T. Tetrahedron Lett.
1998, 39, 1373–1376.
(15) Ullmann, F. Ber. Dtsch. Chem. Ges. 1904, 37, 853–854.
(16) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400–5449.
(17) Frlan, R.; Kikelj, D. Synthesis 2006, 2271–2285.
(18) Sawyer, J. S. Tetrahedron 2000, 56, 5045–5065.
(19) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108,
3054–3131.
(20) Lindley, J. Tetrahedron 1984, 40, 1433–1456.
(21) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248,
2337–2364.
(22) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.;
Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941–2944.
(23) Chan, D. M. T.; Monaco, K. L.; Wang, R. P.; Winters, M. P.
Tetrahedron Lett. 1998, 39, 2933–2936.
(24) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39,
2937–2940.
(25) Theil, F. Angew. Chem., Int. Ed. 1999, 38, 2345–2347.
(10) Tan, E. S.; Miyakawa, M.; Bunzow, J. R.; Grandy, D. K.; Scanlan,
T. S. J. Med. Chem. 2007, 50, 2787–2798.
(11) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N. Angew.
Chem., Int. Ed. 1999, 38, 2097–2152.
DOI: 10.1021/jo9026935
r
Published on Web 02/08/2010
J. Org. Chem. 2010, 75, 1791–1794 1791
2010 American Chemical Society