bond without chelation assistance is not known in the
literature.10 On the other hand, indoles represent an important
class of aromatic compounds frequently encountered in
natural products and pharmaceuticals.11 Transition-metal-
catalyzed selective and controllable C-H functionalization
of indoles has been extensively studied in recent years.12,13
Herein we report a Pd-catalyzed cyanation of indoles through
C-H bond activation. The reaction uses safe and nontoxic
K4[Fe(CN)6] as cyanating agent14 and selectively introduces
a cyano group into the 3-position of indoles with high
efficiency.
On the outset of this investigation, we used N-methylindole
1a as model substrate with K4[Fe(CN)6] to screen suitable
reaction conditions. In order to ensure sufficient solubility
of K4[Fe(CN)6], dipolar aprotic solvents such as DMF,
DMSO, N,N-dimethyl acetamide (DMA), and 1-methyl-2-
pyrrolidinone (NMP) were examined. C3 cyanation took
place in the presence of Pd(OAc)2 (10%) with Cu(OAc)2 (3
equiv) and O2 (1 atm) as oxidant in DMSO at 130 °C.
However, the homocoupling of 1a predominated under such
conditions, giving product 3a (Table 1, entry 1).15 To our
delight, we found that addition of potassium acetate (KOAc)
in above system could dramatically suppress the homocou-
pling (entry 2). Further optimization showed that reactions
in the other three solvents (DMF, DMA, NMP) gave almost
exclusively C3 cyanation product 2a, but the reactions took
Table 1. Optimization of Pd-Catalyzed Cyanation of 1a with
K4[Fe(CN)6]a
time yield
entry
solvent
DMSO
DMSO
DMF
DMA
NMP
base
additive
(h)
(%)b 2a/3ac
1
2
3
4
5
6
-
-
5
3
24
36
48
3
78
85
66
51
44
78
1:3
3:1
21:1
21:1
20:1
3:1
KOAc
KOAc
KOAc
KOAc
-
-
-
-
-
DMF/DMSO KOAc
(10:1)
7
8
9
10
11
12
DMF
DMF
DMF
DMF
DMF
DMF
CsOAc
NaOAc
KOAc
KOAc
KOAc
KOAc
KOAc
KOAc
-
-
4
36
12
36
36
36
24
24
71
50
76
56
38
30
73
0
11:1
32:1
11:1
8:1
11:1
8:1
nBu4NCl
nBu4NBr
BnEt3NCl
3-NO2Py
-
13d DMF
18:1
-
14e
DMF
-
a Unless otherwise noted, the reaction conditions are as follows:
N-methylindole 1a (0.45 mmol), K4[Fe(CN)6] (0.5 equiv), Pd(OAc)2 (0.1
equiv), Cu(OAc)2 (3.0 equiv), base (2.0 equiv), additive (1.0 equiv) in
anhydrous solvent (5 mL), 130 °C, with O2 balloon. b Isolated yield. c Ratio
(9) Jia, X. F.; Yang, D. P.; Wang, W. H.; Luo, F.; Cheng, J. J. Org.
Chem. 2009, 74, 9470.
determined by H NMR. d The reaction was carried out at 150 °C. e The
1
(10) For cyanation of the C-H bond under non-metal-catalyzed condi-
tions, see: (a) Tamura, Y.; Kawasaki, T.; Adachi, M.; Tanio, M.; Kita, Y.
Tetrahedron Lett. 1977, 18, 4417. (b) Yoshida, K. Chem. Commun. 1978,
1108. (c) Smaliy, R. V.; Chaikovskaya, A. A.; Pinchuk, A. M.; Tolmachev,
A. A. Synthesis 2002, 2416.
reaction was carried out in the absence of Pd(OAc)2.
(11) For comprehensive reviews, see: (a) Crich, D.; Banerjee, A. Acc.
Chem. Res. 2007, 40, 151. (b) Humphrey, G. R.; Kuethe, J. T. Chem. ReV.
2006, 106, 2875. (c) Cacchi, S.; Fabrizi, G. Chem. ReV. 2005, 105, 2873.
(12) For reviews, see: (a) Bandini, M.; Eichholzer, A. Angew. Chem.,
Int. Ed. 2009, 48, 9608. (b) Joucla, L.; Djakovitch, L. AdV. Synth. Catal.
longer with slightly decreased yields (entries 3-5). Reaction
with a mixed solvent of DMSO and DMF improved the yield,
but the ratio of 2a to 3a dropped significantly (entry 6).
Switch of KOAc to NaOAc or CsOAc could not significantly
increase the yields (entries 7 and 8). Adding additional
additives such as n-Bu4NCl, n-Bu4NBr, BnEt3NCl, or 3-ni-
tropyridine also failed to improve the reaction (entries 8-12).
The yield of the reaction and the ratio of 2a to 3a were
slightly improved by increasing reaction temperature (entry
13). Finally, a control experiment demonstrated that no
product 2a could be detected when the reaction was carried
out in the absence of Pd(OAc)2.
Under the optimized conditions, the substrate scope of this
reaction was investigated (Table 2).16 It was observed that
the reaction was significantly affected by electronic effects
of the substituents on the indole substrates. The reaction of
N-methylindole with electron-donating substituent on the
benzene ring of indole substrtates proceeded efficiently
(entries 2 and 3). On the contrary, for 5-nitro-N-methylindole,
2009, 351, 673
.
(13) For recent selected publications, see: (a) Brand, J. P.; Charpentier,
J.; Waser, J. Angew. Chem., Int. Ed. 2009, DOI: 10.1002/anie.200905419.
(b) Mutule, I.; Suna, E.; Olofsson, K.; Pelcman, B. J. Org. Chem. 2009,
74, 7195. (c) Yang, S. D.; Sun, C. L.; Fang, Z.; Li, B. J.; Li, Y. Z.; Shi,
Z. J. Angew. Chem., Int. Ed. 2008, 47, 1473. (d) Phipps, R. J.; Grimster,
N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172. (e) Lebrasseur, N.;
Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926. (f) Zhao, J. l.; Zhang, Y. H.;
Cheng, K. J. Org. Chem. 2008, 73, 7428. (g) Bellina, F.; Benelli, F.; Rossi,
R. J. Org. Chem. 2008, 73, 5529. (h) Potavathri, S.; Dumas, A. S.; Dwight,
T. A.; Naumiec, G. R.; Hammann, J. M.; DeBoef, B. Tetrahedron Lett.
2008, 49, 4050. (i) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (j)
Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129,
12072. (k) Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef,
B. Org. Lett. 2007, 9, 3137. (l) Zhang, Z. Q.; Hu, Z. Z.; Yu, Z. X.; Lei, P.;
Chi, H. J.; Wang, Y.; He, R. Tetrahedron Lett. 2007, 48, 2415. (m) Wang,
X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476. (n) Nakao,
Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128,
8146. (o) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am.
Chem. Soc. 2006, 128, 4972. (p) Bressy, C.; Alberico, D.; Lautens, M. J. Am.
Chem. Soc. 2005, 127, 13148. (q) Wang, X.; Lane, B. S.; Sames, D. J. Am.
Chem. Soc. 2005, 127, 4996. (r) Lane, B. S.; Brown, M. A.; Sames, D.
J. Am. Chem. Soc. 2005, 127, 8050. (s) Grimster, N. P.; Gauntlett, C.;
Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125. (t)
Capito, E.; Brown, J. M.; Ricci, A. Chem. Commun. 2005, 1854. (u) Lane,
B. S.; Sames, D. Org. Lett. 2004, 6, 2897. (v) Ma, S. M.; Yu, S. C.
Tetrahedron Lett. 2004, 45, 8419.
(16) Typical procedure for cyanation of indoles. Under O2 balloon or
open air, a reaction tube was charged with indoles (0.45 mmol), K4[Fe(CN)6]
(0.5 equiv), Pd(OAc)2 (10 mol %), Cu(OAc)2 (3 equiv), and dry DMF or
DMSO (5 mL). In the reaction with 1a-h, KOAc (2.0 equiv) was added.
The mixture was kept stirring at 130 or 150 °C for 2-36 h. After completion
of the reaction, the solution was extracted with ethyl acetate (3 × 10 mL),
then combined solution washed with H2O and brine, and dried over MgSO4.
Removal of the solvent under reduced pressure gave a crude product
which was purified on silica gel (petroleum ether/EtOAc) to afford the
products.
(14) For the first use of K4[Fe(CN)6] in Pd-catalyzed cyanation of aryl
halides, see: (a) Schareina, T.; Zapf, A.; Beller, M. Chem Commun. 2004,
1388. For a recent example, see: (b) DeBlase, C.; Leadbeater, N. E.
Tetrahedron 2010, 66, 1098.
(15) Liang, Z. J.; Zhao, J. L.; Zhang, Y. H. J. Org. Chem. 2010, 75,
170.
Org. Lett., Vol. 12, No. 5, 2010
1053