8360 J. Agric. Food Chem., Vol. 57, No. 18, 2009
Lahtinen et al.
Diacetate of 9-carboxyaldehyde-50-(500-carboxyaldehyde-200-hydroxy-
300-methoxyphenyl)-6-hydroxymethyl-30,4,11-trimethoxydibenzo[d,f]-
[1,3]dioxepin-2-spiro-40-cyclohexa-20,50-dienone (14) or diacetate of
6-carboxyaldehyde-50-(500-carboxyaldehyde-200-hydroxy-300-methoxyphenyl)-
9-hydroxymethyl-30,4,11-trimethoxydibenzo[d,f][1,3]dioxepin-2-spiro-
40-cyclohexa-20,50-dienone (15): Numbering of atoms in NMR assignations
according to compound 14; 1H NMR (499.82 MHz, CDCl3, 27 °C) δ 2.15
(3H, s, -OCOCH3), 2.22 (3H, s, arom -OCOCH3), 3.71 (3H, s, 30-
OCH3), 3.92 (6H, br s, 300-OCH3, 4-OCH3), 3.97 (3H, s, 11-OCH3), 5.18
(2H, s, -CH2-), 5.87 (1H, d, 3.0 Hz, 20-H), 6.85 (1H, d, 3.0 Hz, 60-H), 7.05
(1H, d, 1.6 Hz, 5-H), 7.22 (1H, d, 1.6 Hz, 7-H), 7.44 (1H, d, 1.7 Hz, 600-H),
7.52 (1H, d, 1.7 Hz, 400-H), 7.55 (1H, d, 1.6 Hz, 10-H), 7.70 (1H, d, 1.6 Hz,
8-H), 9.93 (1H, s, 500-CHO), 10.05 (1H, s, 9-CHO); 13C NMR (125.69
MHz, CDCl3, 27 °C)
δ 20.48 (arom -OCOCH3), 21.04 (aliph
Figure 2. Oxidation of vanillin(1) and guaiacylic β-O-4 dimers (5 and 6) in
laccase-catalyzed reactions.
-OCOCH3), 55.49 (30-OCH3), 56.11, 56.27 (300-OCH3, 4-OCH3), 56.35
(11-OCH3), 65.89 (-CH2-), 109.14 (20-C), 110.02 (2-C = 10-C), 110.49
(10-C), 112.04 (400-C), 112.47 (5-C), 120.23 (7-C), 123.89 (8-C), 125.44 (600-
C), 129.66 (100-C), 133.25 (either of 1O-C-C-C-C-3O-), 134.58,
134.63, 134.67, 134.78, 134.87 (either of 1O-C-C-C-C-3O-, 50-C,
500-C, 6-C, 9-C), 138.99 (3O-C), 141.60 (60-C), 143.39 (200-C), 144.38
(1O-C-), 150.86 (30-C), 152.29 (300-C), 153.08 (4-C), 153.97 (11-C),
167.58 (arom -OCOCH3), 170.77 (aliph -OCOCH3), 177.91 (40-CdO),
190.50 (50-CHO), 190.84 (9-CHO); ESI-MS (positive), m/z 659.1759 [M þ
H]þ (C35H31O13 requires 659.1759), 681.1576 [M þ Na]þ (C35H30NaO13
requires 681.1579), 697.1340 [M þ K]þ (C35H30KO13 requires 697.1318).
Monoacetate of 1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(20-methoxy-
phenoxy)-1-ethanone (18): In the same fraction with compound 7; 1H
NMR (499.82 MHz, CDCl3, 27 °C) δ 2.35 (3H, s, -OCOCH3), 3.87 (3H, s,
20-OCH3), 3.88 (6H, s, 3-OCH3, 5-OCH3), 5.27 (2H, s, βH), 6.86-6.98
(4H, m, ArH) 7.34 (2H, s, 2-H, 6-H); 13C NMR (125.69 MHz, CDCl3, 27
°C) δ 20.37 (-OCOCH3), 55.81 (20-OCH3), 56.31 (3-OCH3, 5-OCH3),
72.49 (βC), 105.21 (2-C, 6-C), 112.21 (30-C), 114.90, 120.86, 122.62 (40-60-
C), 132.54 (1-C), 133.37 (4-C), 147.32 (10-C), 149.75 (20-C), 152.38 (3-C, 5-
C), 168.06 (-OCOCH3), 193.78 (RC); ESI-MS (positive), m/z 361.1267 [M
þ H]þ, (C19H21O7 requires 361.1282), 383.1091 [M þ Na]þ (C19H20NaO7
requires 383.1101), 399.0823 [M þ K]þ (C19H20KO7 requires 399.0841).
Diacetate of 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(20-meth-
oxyphenoxy)-1-propanone (19): 1H NMR (499.82 MHz, CDCl3, 27 °C) δ
2.05 (3H, s, aliph -OCOCH3), 2.33 (3H, s, arom -OCOCH3), 3.75 (3H, s,
20-OCH3), 3.85 (6H, s, 2-OCH3, 6-OCH3), 4.47 (1H, dd, 12.1 Hz, 7.5 Hz,
γH), 4.72 (1H, dd, 12.1 Hz, 3.6 Hz, γ0H), 5.63 (1H, dd, 7.5 Hz, 3.6 Hz, βH),
6.83 (1H, td, 7.9 Hz, 1.5 Hz, 40-H or 50-H), 6.87 (1H, dd, 7.9 Hz, 1.5 Hz, 30-
H), 6.93 (1H, dd, 7.9 Hz, 1.5 Hz, 60-H), 7.00 (1H, td, 7.9 Hz, 1.5 Hz, 40-H or
50-H), 7.48 (2H, s, 2-H, 6-H); 13C NMR (125.69 MHz, CDCl3, 27 °C) δ
20.28 (arom -OCOCH3), 20.65 (aliph -OCOCH3), 55.63 (20-OCH3),
56.22 (3-OCH3, 5-OCH3), 64.37 (γC), 80.40 (βC), 105.76 (2-C, 6-C),
112.58 (30-C), 117.97 (60-C), 120.95, 123.44 (40-C, 50-C), 132.54 (1-C),
133.32 (4-C), 146.67 (10-C), 150.19 (20-C), 152.28 (3-C, 5-C), 167.93 (arom
-OCOCH3), 170.85 (aliph -OCOCH3), 194.24 (RC); ESI-MS (positive),
m/z 455.1284 [M þ Na]þ (C22H24NaO9 requires 455.1313), 471.1020 [M þ
K]þ (C22H24NaO9 requires 471.1052).
(R-OCOCH3), 56.12 (20-OCH3), 56.16 (3-OCH3, 5-OCH3), 101.06 (2-C, 6-
C), 112.91 (30-C), 118.88 (60-C), 121.01, 124.78 (40-C, 50-C), 128.65 (4-C),
131.63 (1-C), 133.81 (RC), 134.07 (βC), 146.37 (10-C), 150.14 (20-C), 152.27
(3-C, 5-C), 168.24 (R-OCOCH3), 168.65 (arom -OCOCH3); ESI-MS
(positive), m/z 420.1652 [M þ NH4]þ (C21H26NO8 requires 420.1653),
425.1202 [M þ Na]þ (C21H22NaO8 requires 425.1207), 441.0948 [M þ K]þ
(C21H22KO8 requires 441.0946).
Monoacetate of 1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(20-methoxy-
1
phenoxy)-2-propen-1-one (22): H NMR (499.82 MHz, CDCl3, 27 °C) δ
2.35 (3H, s, -OCOCH3), 3.85 (3H, s, 20-OCH3), 3.88 (6H, s, 2-OCH3, 6-
OCH3), 4.73 (1H, d, 2.5 Hz, γH), 5.29 (1H, d, 2.5 Hz, γ0H), 6.95 (1H, td, 7.9
Hz, 1.3 Hz, 50-H), 6.98 (1H, dd, 7.9 Hz, 1.3 Hz, 30-H), 7.06 (1H, dd, 7.9 Hz,
1.6 Hz, 60-H), 7.16 (1H, td, 7.9 Hz, 1.6 Hz, 40-H), 7.40 (2H, s, 2-H, 6-H); 13C
NMR (125.69 MHz, CDCl3, 27 °C) δ 20.43 (-OCOCH3), 55.77 (20-
OCH3), 56.28 (3-OCH3, 5-OCH3), 100.55 (γC), 106.98 (2-C, 6-C), 112.83
(30-C), 121.29 (50-C), 121.63 (60-C), 125.87 (40-C), 132.76 (4-C), 133.96 (1-
C), 143.12 (10-C), 150.85 (20-C), 151.91 (3-C, 5-C), 157.66 (βC), 168.14
(-OCOCH3), 189.32 (RC); ESI-MS (positive), m/z 762.2765 [2M þ NH4]þ
(C40H44NO14 requires 762.2756), 767.2327 [2M þ Na]þ (C40H40NaO14
requires 767.2310), 783.2101 [2M þ K]þ (C40H40KO14 requires 783.2050).
RESULTS
Eight different lignin model compounds were used to study
reactions of laccases with lignin (Figure 1): vanillin (1), vanillyl
alcohol (2), syringyl alcohol (3), dehydrodivanillyl alcohol (4),
guaiacylglycol β-guaiacyl ether (5), guaiacylglycerol β-guaiacyl
ether (6), syringylglycol β-guaiacyl ether (7), and syringylglycerol
β-guaiacyl ether (8). Two different laccases were used: Melano-
carpus albomyces and Trametes hirsuta laccases. The T1 copper
redox potentials are 470 mV for M. albomyces laccase (20) and
780 mV for T. hirsuta laccase (24).
Structures of Oxidation Products. The oxidation products were
first deduced on the basis of the data from LC-MS and later
confirmed with NMR and high-resolution ESI-MS. The same
oxidation products were obtained with both laccases and, thus,
the fractionation and detailed analysis were performed with only
one of the laccases.
With vanillin (1) and guaiacylic β-O-4 dimers 5 and 6, only one
type of oxidation product, a 5-5 coupling product, was observed
(Figure2). These kinds ofproducts were highlyexpectedastypical
and well-known oxidation products in guaiacylic lignin model
compound oxidations.
Vanillyl alcohol (2) gave the most complicated distribution of
oxidation products (Figure 3). Three different kinds of 5-5
coupling products were formed: one formed straightforward
from two radicals of vanillyl alcohol (4), and the other two had
one (12) or two (9) benzylic hydroxyl groups oxidized. Vanillin
(1), a product formed when the benzylic hydroxyl of vanillyl
alcohol is oxidized, was also formed. The structures of trimeric
and tetrameric (based on mass values in MS) oxidation products
remained unfortunately unresolved, because they were in the
same fraction in nearly equimolar amounts.
Triacetate of 10,15-dihydro-1,3,6,8,11,13-hexamethoxy-2,7,12-triol-
5H-tribenzo[a,d,g]cyclononene (20): 1H NMR (499.82 MHz, CDCl3,
27 °C) δ 2.31 (9H, s, -OCOCH3), 3.76 (9H, s, 3-OCH3, 8-OCH3, 13-
OCH3), 3.88 (9H, s, 1-OCH3, 6-OCH3, 11-OCH3), 4.05 (3H, d, 13.8 Hz,
50-H, 100-H, 150-H), 4.45 (3H, d, 13.8 Hz, 5-H, 10-H, 15-H), 7.20 (3H, s, 4-
H, 9-H, 14-H); 13C NMR (125.69 MHz, CDCl3, 27 °C) δ 20.61
(-OCOCH3), 30.10 (-CH2-), 56.06 (3-OCH3, 8-OCH3, 13-OCH3),
60.85 (1-OCH3, 6-OCH3, 11-OCH3), 110.53 (4-C, 9-C, 14-C), 131.50 (2-
C, 7-C, 12-C), 125.21, 138.65 (CdC in cyclononatriene ring), 150.24 (3-C,
8-C, 13-C), 150.61 (1-C, 6-C, 11-C), 168.74 (-OCOCH3); ESI-MS
(positive), m/z 642.2554 [M þ NH4]þ (C33H40NO12 requires 642.2545),
647.2097 [M þ Na]þ (C33H36NaO12 requires 647.2099), 663.1843 [M þ
K]þ (C33H36KO12 requires 663.1838).
Diacetate of 1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(20-methoxyphen-
oxy)-1-ethen-1-ol (21): 1H NMR (499.82 MHz, CDCl3, 27 °C) δ 2.32
(3H, s, R-OCOCH3), 2.33 (3H, s, arom -OCOCH3), 3.82 (6H, s, 3-OCH3,
5-OCH3), 3.88 (3H, s, 20-OCH3), 6.61 (2H, s, 2-H, 6-H), 6.82 (1H, s, βH),
6.93 (1H, td, 7.9 Hz, 1.3 Hz, 50-H), 6.96 (1H, dd, 7.9 Hz, 1.3 Hz, 30-H), 7.10
(1H, td, 7.9 Hz, 1.6 Hz, 40-H), 7.14 (1H, dd, 7.9 Hz, 1.6 Hz, 60-H); 13C
NMR (125.69 MHz, CDCl3, 27 °C) δ 20.41 (arom -OCOCH3), 20.61