emission of Nd(III). A detailed study of the photophysics of
the system as well as the use of ligand 2 in conjunction with
other d and f metals are currently under investigation.
Many thanks to J. McB Harrowfield for helpful discussions.
Support from the Universite de Strasbourg, the International
´
Centre for Frontier Research in Chemistry (FRC),
Strasbourg, the C.N.R.S., the Institut Universitaire de France
and the Ministere de l’Enseignement Superieur et de la
´
Recherche (PhD fellowship to F. E.) is gratefully acknowl-
edged. The work of C. A. S. forms part of the research
programme of the Dutch Polymer Institute (DPI), project
#628. The work of A. G. was supported by the European
Commission (EC) through the Human Potential Programme
within the 6th framework programme (Marie Curie RTN
NANOMATCH, MRTN-CT-2006-035884).
Fig. 3 Excitation spectrum of [2-Nd]ꢀ and [(2-Pd)–Nd]ꢀ by monitoring
the emission at 1070 nm, and emission spectra (dotted line) of Nd(III)
porphyrin complexes while exciting at 429 nm in degassed THF at RT.
two Q bands around 530 and 560 nm are observed as expected
(Table 1, Fig. 2).19 The less pronounced shift of ca. 3 nm in the
Soret band for [(2-Pd)–Nd]ꢀ with respect to 2-Pd is probably
due to the rigidification of the porphyrin ring upon binding of
Pd(II). No change is observed for the relative intensity of the Q
bands upon binding of Nd(III).
Notes and references
1 G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt and F. C. J. M.
Van Veggel, Adv. Mater., 2002, 14, 1147.
2 M. P. Oude Wolbers, F. C. J. M. Van Veggel, B. H. M. Snellinck-
Ruel, J. W. Hofstraat, F. A. J. Geurts and D. N. Reinhoudt,
¨
J. Chem. Soc., Perkin Trans. 2, 1998, 2141.
In THF, upon excitation at around 425 nm, both [2-Nd]ꢀ
and [(2-Pd)–Nd]ꢀ complexes display Nd-centred NIR lumi-
nescence, in addition to the porphyrin centred emissions in the
visible region (Fig. 3). However, the presence of Nd(III) causes
partial quenching of the porphyrin centred luminescence. At
RT, in degassed and aerated solution as well as at 77 K, the
luminescence spectrum (Fig. 3) in the 1000–1500 nm range
consists of two bands at 1065 and 1340 nm corresponding to
3 J.-C. Bunzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048.
¨
¨
4 S. Comby and J.-C. G. Bunzli, Lanthanide Near-Infrared
Luminescence in Molecular Probes and Devices, in Handbook on
the Physics and Chemistry of Rare Earths, Elsevier Science, B.V.,
Amsterdam, 2007, ch. 235, vol. 37.
5 (a) B. Alpha, J.-M. Lehn and G. Mathis, Angew. Chem., Int. Ed.,
1987, 26, 266; (b) B. Alpha, R. Ballardini, V. Balzani, J.-M. Lehn,
S. Perathoner and N. Sabbatini, Photochem. Photobiol., 1990, 52,
299.
6 M. D. Ward, Coord. Chem. Rev., 2007, 251, 1663.
7 J. Zhang and S. Petoud, Chem.–Eur. J., 2008, 14, 1264.
8 N. M. Shavaleev, R. Scopelliti, F. Gummy and J.-C. Bunzli, Inorg.
Chem., 2008, 47, 9055.
the expected f–f transitions (4F3/2 - 4I11/2 and 4F3/2 - 4I13/2
,
respectively). The excitation spectra of [2-Nd]ꢀ and [(2-Pd)–Nd]ꢀ
species while monitoring the emission from Nd at 1070 nm
(Fig. 3) are identical to the porphyrin absorption spectra
(Fig. 2) demonstrating thus the antenna effect of the porphyrin
moiety in both complexes.
¨
9 J. P. Leonard, C. B. Nolan, F. Stomeo and T. Gunnlaugsson,
Photochemistry and Photophysics of Coordination Compounds:
Lanthanides; Topics in Current Chemistry, Springer-Verlag, Berlin,
Heidelberg, 2007, p. 281.
The total emission spectra in the NIR region (1000–1500 nm)
for [(3)4Nd]ꢀ, [2-Nd]ꢀ and [(2-Pd)–Nd]ꢀ were recorded under
the exact same conditions in the presence and in the absence of
O2 while exciting at 350 nm. In all cases, enhanced emission
from the Nd(III) ion was observed in anaerobic conditions.
Under aerobic conditions, ca. 12–25% quenching of the Nd
emission could be estimated. These observations imply that:
(i) a triplet excited state is involved in the energy transfer
processes, (ii) in the presence of O2, two competitive processes,
i.e. energy transfer and quenching by oxygen of a triplet state,
are taking place and (iii) the intramolecular energy transfer is
relatively fast.
10 (a) A. Beeby, B. P. Burton-Pye, S. Faulkner, G. R. Motson,
J. C. Jeffrey, J. A. McCleverty and M. D. Ward, J. Chem. Soc.,
Dalton Trans., 2002, 1923; (b) A. Beeby, L. M. Bushby, D. Maffeo
and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 2002, 48;
(c) M. Mehlstaubl, G. S. Kottas, S. Colella and L. De Cola, Dalton
¨
Trans., 2008, 2385; (d) M. Lama, O. Mamula, G. S. Kottas,
F. Rizzo, L. De Cola, A. Nakamura, R. Kuroda and
H. Stoeckli-Evans, Chem.–Eur. J., 2007, 13, 7358.
11 (a) A. Beeby, R. S. Dickins, S. Fitzgerald, L. J. Govenlock,
C. L. Maupin, D. Parker, J. P. Riehl, G. Siligardi and J. A. G.
Williams, Chem. Commun., 2000, 1183; (b) V. A. Montes,
M. A. J. Rodgers and P. Anzenbacher, Inorg. Chem., 2007, 46,
10464; (c) H. He, W.-K. Wong, J. Guo, K.-F. Li, W.-Y. Wong,
W.-K. Lo and K.-W. Cheah, Aust. J. Chem., 2004, 57, 803.
12 J. P. Collman, R. R. Gagne, T. R. Halbert, J.-Cl. Marchon and
C. A. Reed, J. Am. Chem. Soc., 1973, 95, 7868.
In conclusion, ligand 2, a preorganised porphyrin-based
ligand bearing four monoanionic chelates on the same face
of the backbone, offers two distinct coordinating poles
consisting of the porphyrin macrocyclic core and four
8-hydroxyquinolines organised in a convergent manner. The
difference in binding propensity of the two coordinating poles
was exploited for the formation of mononuclear ([2-Nd]ꢀ) and
heterobinuclear ([(2-Pd)–Nd]ꢀ) Neodymium complexes. In
both types of complexes, the porphyrin backbone plays the
role of sensitizer. Indeed, excitation in the visible region
(Soret band of the porphyrin) leads to an efficient NIR
13 (a) C. Drexler, M. W. Hosseini, J.-M. Planeix, G. Stupka,
De Cian and J. Fischer, Chem. Commun., 1998, 689;
(b) B. Zimmer, V. Bulach, C. Drexler, S. Erhardt,
M. W. Hosseini and A De Cian, New J. Chem., 2002, 26, 43.
14 J. Lindsey, J. Org. Chem., 1980, 45, 5215.
15 W. H. Meek and C. H. Fuchsmann, J. Chem. Eng. Data, 1969, 14,
388.
16 E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606.
A
17 S. Comby, D. Imbert, A.-S. Chauvin and J.-C. Bunzli, Inorg.
Chem., 2006, 45, 732.
¨
18 R. Ballardini, G. Varani, M. T. Indelli and F. Scandola, Inorg.
Chem., 1986, 25, 3858.
19 M. Gouterman, J. Mol. Spectrosc., 1961, 6, 138.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 619–621 | 621