1116
R. Sateesh Chandra Kumar et al. / Tetrahedron Letters 51 (2010) 1114–1116
OH
Cbz
NH OH
O
b
a
14
N
H
15
2
Scheme 3. Synthesis of C-4 epimer of alkaloid (+)-241D. Reagents and conditions: (a) PdCl2, CuCl, O2, THF–H2O (10:1), rt for 3 h, 83%; (b) 10% Pd/C, H2, EtOAc, overnight, 76%.
70% yield.13 These diastereomers were separated by the flash chro-
matography to yield pure compounds 13 and 14. A Wacker oxida-
(b) Numata, A.; Ibuka, I. Alkaloids from Ants and Other Insects. In The Alkaloids;
Brossi, A., Ed.; Academic Press: New York, 1987; Vol. 31, pp 193–315.
2. Leclerq, S.; Thirionet, I.; Broeders, F.; Daloze, D.; Vander Meer, R.; Braeckman, J.
tion of 13 gave the corresponding carbonyl compound 6 in 85%
yield.14 The absence of olefinic signals and the presence of a methyl
singlet at d 2.13 in 1H NMR confirmed the Wacker oxidation prod-
uct 6. Finally, reductive amination followed by diastereoselective
cyclization in the presence of 10% Pd/C in ethyl acetate under H2
atmosphere led to the title compound 1 in 77% yield (Scheme
2).15 The spectral data obtained were in good agreement with
those reported in the literature [optical rotation of 1 is +3.2° (c
0.3, MeOH)].6
Having achieved a reliable synthesis of the key homoallylic
alcohol intermediate 14, we proceeded to use this compound for
the preparation of C-4 epimer of alkaloid (+)-241D (2). Accordingly,
the double bond present in 14 was converted into ketone 15 using
Wacker oxidation protocol (PdCl2, CuCl, O2, THF–H2O (10:1), rt).
Reductive amination followed by diastereoselective cyclization of
15 with 10% Pd/C in ethyl acetate afforded 2 as a single diastereo-
mer in 76% yield and with properties consistent with literature val-
ues6 (Scheme 3). All the intermediate compounds were well
characterized by IR, NMR, and mass spectral techniques.16
In conclusion, we have developed an efficient stereoselective
protocol for the preparation of dendrobate alkaloid 1 and its C-4
epimer 2 by employing Maruoka asymmetric allylation and For-
syth’s reaction sequence as the key steps. This general synthetic
route demonstrates its versatility toward the synthesis of highly
functionalized piperidines and also paves the way for the structur-
ally related analogs. On the basis of the route described herein, fur-
ther work toward preparation of the library of 2,4,6-piperidinol
analogs for biological analysis is in progress in our laboratory.
C. Tetrahedron 1994, 50, 8465.
3. (a) Daly, J. W.; Myers, C. W.; Whittaker, N. Toxicon 1987, 25, 1023; (b) Edwards,
M. W.; Daly, J. W. J. Nat. Prod. 1988, 51, 1188.
4. Edwards, M. W.; Garraffo, H. M.; Daly, J. W. Synthesis 1994, 1167.
5. Daly, J. W.; Nishizawa, Y.; Edwards, M. W.; Waters, J. A.; Aaronstam, R. S.
Neurochem. Res. 1991, 16, 489.
6. Previous asymmetric synthesis of 1 and its C-4 epimer 2: (a) Chenevert, R.;
Dickmann, M. J. Org. Chem. 1996, 61, 3332; (b) Ciblat, S.; Calinaud, P.; Canet, J.-
L.; Troin, Y. J. Chem. Soc., Perkin Trans. 1 2000, 353; (c) Ma, D.; Sun, H. Org. Lett.
2000, 2, 2503; (d) Davis, F. A.; Chao, B.; Rao, A. Org. Lett. 2001, 3, 3169; (e)
Monfray, J.; Gelas-Mialhe, Y.; Gramain, J.-C.; Remuson, R. Tetrahedron:
Asymmetry 2005, 16, 1025; (f) Gnamm, C.; Krauter, C. M.; Brodner, K.;
Helmchen, G. Chem. Eur. J. 2009, 15, 2050; g Previous racemic synthesis: Ref.
4.; (h) Girard, N.; Hurvois, J.-P. Tetrahedron Lett. 2007, 48, 4097.
7. (a) Kumar, R. S. C.; Sreedhar, E.; Reddy, G. V.; Babu, K. S.; Rao, J. M. Tetrahedron:
Asymmetry 2009, 20, 1160; (b) Sreedhar, E.; Kumar, R. S. C.; Reddy, G. V.;
Robinson, A.; Babu, K. S.; Rao, J. M. Tetrahedron: Asymmetry 2009, 20, 440; (c)
Reddy, G. V.; Kumar, R. S. C.; Babu, K. S.; Rao, J. M. Tetrahedron Lett. 2009, 50,
4117.
8. Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708.
9. Capaccio, C. A. I.; Varela, O. Tetrahedron: Asymmetry 2000, 11, 4945.
10. Randl, S.; Blechert, S. J. Org. Chem. 2003, 68, 8879.
11. Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 2483.
12. The diastereoselectivity was determined by HPLC [YMC silica column,
150 ꢁ 4.6 mm, 5
l, 210 nm, eluent, i-propanol/hexane, 8:92, 10 lL injection
volume, flow rate 1 mL/min retention time 9.57 & 11.05 min].
13. Cink, R. D.; Forsyth, C. J. J. Org. Chem. 1995, 60, 8122.
14. Sabitha, G.; Sudhakar, K.; Reddy, N. M.; Kumar, M. R.; Yadav, J. S. Tetrahedron
Lett. 2005, 46, 6567.
15. Randl, S.; Blechert, S. Tetrahedron Lett. 2004, 45, 1167.
16. Spectral data for selected compounds: Compound 6: White solid, mp 95–97 °C
½
a 2D5
ꢂ
ꢀ2.8 (c 0.75, CHCl3) 1H NMR (300 MHz, CDCl3): d 7.36–7.22 (m, 5H), 5.13–
4.98 (m, 3H), 4.14–3.97 (m, 1H), 3.86–3.67 (m, 1H), 2.68–2.31 (m, 2H), 2.13 (s,
3H), 1.60–1.12 (m, 18H), 0.88 (t, 3H, J = 6.2 Hz). 13C NMR (75 MHz, CDCl3): d
207.6, 157.0, 136.6, 128.4, 128.0, 66.7, 64.4, 50.2, 48.3, 42.8, 35.4, 31.9, 30.8,
29.6, 29.5, 29.4, 26.2, 22.7, 14.2. FABMS: m/z 392 [M+1]+.
Compound 13: White solid, mp 92–94 °C ½a D25
ꢂ
+1.6 (c 1.08, CHCl3) 1H NMR
(300 MHz, CDCl3): d 7.36–7.23 (m, 5H), 5.88–5.68 (m, 1H), 5.16–4.96 (m, 4H),
4.91–4.78 (br d, 1H), 3.88–3.72 (m, 1H), 3.71–3.54 (m, 1H), 2.29–2.05 (m, 2H),
1.57–1.15 (m, 18H), 0.88 (t, 3H, J = 6.2 Hz). 13C NMR (75 MHz, CDCl3): d 157.2,
136.4, 135.2, 128.4, 128.1, 128.0, 117.0, 66.9, 66.8, 48.3, 43.4, 41.7, 35.6, 29.6,
29.5, 29.3, 26.2, 22.7, 14.2. FABMS: m/z 376 [M+1]+.
Acknowledgments
The authors gratefully acknowledge the keen interest shown by
Dr. J. S. Yadav, Director, IICT, Hyderabad. R.S.C.K. and G.V.R. thank
CSIR and UGC, New Delhi, for financial support.
Compound 8: White Solid, mp 60–62 °C ½a D25
ꢂ
ꢀ11 (c 1, CHCl3), 1H NMR
(300 MHz, CDCl3): d 7.39–7.20 (m, 5H), 5.83–5.64 (m, 1H), 5.12–4.98 (m, 2H),
4.63–4.52 (br d, 1H), 3.76–3.60 (m, 1H), 2.32–2.08 (m, 2H), 1.56–1.12 (m, 16H),
0.88 (t, 3H, J = 6.4 Hz). 13C NMR (75 MHz, CDCl3): d 155.7, 136.7, 134.2, 128.4,
128.0, 117.8, 66.4, 50.5, 39.5, 34.6, 31.9, 29.6, 29.3, 25.9, 22.7, 14.2. IR (KBr):
mmax 3312, 2920, 2851, 1686, 1348.56, 1265, 1123 cmꢀ1; FABMS: m/z 332
[M+1]+.
References and notes
1. (a) Strunz, G. M.; Findlay, J. A. Pyridine and Piperidine Alkaloids. In The
Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, pp 89–174;