B. Zhang et al. / Bioorg. Med. Chem. Lett. 20 (2010) 805–808
807
NO2
Supplementary data
iii
Supplementary data associated with this article can be found, in
ii
MeO2C
Me
CO2H
Me
cinchonidine
3-cinchonidine salt
NO2
N
H
References and notes
i
(+)-(S)-3a
MeO2C
Me
CO2H
Me
1. Safak, C.; Simsek, R. Mini. Rev. Med. Chem. 2006, 6, 747.
NO2
i
2. Inotsume, N.; Nakano, M. J. Biochem. Biophys. Methods 2002, 54, 255.
3. Kajino, M.; Wada, Y.; Nagai, Y.; Nagaoka, A.; Meguro, K. Chem. Pharm. Bull. 1989,
37, 2225.
4. Cataldi, M.; Taglialatela, M.; Palagiano, F.; Secondo, A.; deCaprariis, P.;
Amoroso, S.; diRenzo, G.; Annunziato, L. Eur. J. Pharmacol. 1999, 376, 169.
5. Franckowiak, G.; Bechem, M.; Schramm, M.; Thomas, G. Eur. J. Pharmacol. 1985,
114, 223.
6. (a) Ashworth, I.; Hopes, P.; Levin, D.; Patel, I.; Salloo, R. Tetrahedron Lett. 2002,
43, 4931; (b) Iqbal, N.; Vo, D.; McEwen, C. A.; Wolowyk, M. W.; Knaus, E. E.
Chirality 1994, 6, 515; (c) Martin, N.; Martinez-Grau, A.; Seoane, C.; Marco, J. L.;
Albert, A.; Cano, F. H. Tetrahedron: Asymmetry 1995, 6, 877.
N
H
3-quinidine salt
ii
quinidine
MeO2C
Me
CO2H
Me
3
iii
N
H
(-)-(R)-3b
NO2
7. (a) Boatto, G.; Nieddu, M.; Faedda, M. V.; deCaprariis, P. Chirality 2003, 15, 494;
(b) Shibanuma, T.; Iwanami, M.; Okuda, K.; Takenaka, T.; Murakami, M. Chem.
Pharm. Bull. 1980, 28, 2809; (c) Ashimori, A.; Uchida, T.; Ohtaki, Y.; Tanaka, M.;
Ohe, K.; Fukaya, C.; Watanabe, M.; Kagitani, M.; Yokoyama, K. Chem. Pharm.
Bull. 1991, 39, 108; (d) Peri, R.; Padmanabhan, S.; Rutledge, A.; Singh, S.; Triggle,
D. J. J. Med. Chem. 2000, 43, 2906; (e) Baranda, A. B.; Etxebarria, N.; Jiménez, R.
M.; Alonso, R. M. J. Chromatogr. Sci. 2005, 43, 505; (f) Tamazawa, T.; Arima, H.;
Kojima, T.; Isomura, Y.; Okada, M.; Fujita, S.; Furuya, T.; Takenaka, T.; Inagaki,
O.; Terai, M. J. Med. Chem. 1986, 29, 2504.
IV
(+)-(S)-3a
MeO2C
Me
CO2CH2(CH2)3Me
Me
N
H
(-)-(R)-1a
NO2
8. (a) Yang, Z.; Zhou, S.; Yang, T.; Mei, Q.; Liu, L. J. Fourth. Mil. Med. Univ. 2004, 25,
1794; (b) Liu, L.; Mei, Q.; Zhang, F.; Chen, L.; Zhao, D. Chin. Pharmacol. Bull.
2003, 19, 796; (c) Wang, J.; Guo, W.; Mei, Q.; Wang, S.; Zhao, D. J. Fourth. Mil.
Med. Univ. 2003, 24, 1688; (d) Wang, L.; Mei, Q.; Zhao, D.; Wu, L.; Tian, Q.; Li, J.
Chin. Pharmacol. Bull. 2000, 16, 406; (e) Liu, L.; Mei, Q.; Zhao, D. J. Fourth. Mil.
Med. Univ. 2001, 22, 1456; (f) Wang, L.; Mei, Q.; Zhao, D.; Guo, Z. Acta
Pharmacol. Sin. 2000, 21, 623; (g) Yao, X.; Gan, H.; Jia, M.; Fang, Z.; Mei, Q. J.
Fourth. Mil. Med. Univ. 2000, 21, 311; (h) Wang, L.; Mei, Q.; Zhao, D.; Tian, Q.;
Zhang, Z. Chin. Pharm. J. 1998, 33, 282; (i) Wang, L.; Pei, Q.; Mei, Q.; Zhao, D.; Li,
J.; Tian, Q. Chin. Pharmacol. Bull. 1997, 13, 512.
IV
(-)-(R)-3b
MeO2C
Me
CO2CH2(CH2)3Me
Me
N
H
(+)-(S)-1b
Scheme 2. Reagents and conditions: (i) solvent, refluxing, 15 min; rt, overnight; (ii)
0.5 M HCl, 0 °C; (iii) recovering of cinchonidine or quinidine: 40%NaOH, rt; (iv)
SOCl2, CH2Cl2–DMF (4:1, v/v), ꢁ20 °C.
9. Bao, C.; Chen, Z.; Yuan, F. Chin. J. Pharm. 1992, 23, 8.
10. (a) Borghese, A.; Libert, V.; Zhang, T.; Charles, A. A. Org. Process Res. Dev. 2004, 8,
532; (b) Wang, Y.; Chen, A. M. Org. Process Res. Dev. 2008, 12, 282.
11. Preparation of the optical isomers of 2,6-dimethyl-5-methoxycarbonyl-4-(3-
nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid:
A mixture of 3 (4 g,
12 mmol) and cinchonidine (3.55 g, 12 mmol) in DMF (8 mL) was refluxed
for 15 min and then added heated water (5 mL). The above mixture was cooled
and allowed to stand at ambient temperature for 18 h. The resulting
precipitates were collected by filtration and air-dried to give the impure 3-
cinchonidine salt. After recrystallized twice from DMF–H2O (8:5), the pure salt
was obtained (3.1 g) in 41% yield (82% based on the isomer). Mp 193–195 °C;
Table 2
Inhibition of [3H]-nitrendipine binding to rat cardiac and cerebral cortex membrane
homogenate
½ ꢂ ꢁ58.4(c 0.5, acetone). A suspension of the pure salt (2.0 g, 3 mmol) in
a 2D5
a
Entry
Drug
IC50 (nM)
EtOAc (100 mL) was treated with 0.5 M HCl (40 mL) under stirring and cooling
in an ice-bath and then the aqueous layer was removed and extracted with
EtOAc. The combined organic layer were washed with brine, dried over Na2SO4
and evaporated in vacuo to give (+)-3a (0.88 g). (+)-(S)-3a: 84% yield. Mp 193–
Cardiac membrane
Cerebral cortex membrane
1
2
3
(ꢁ)-(R)-1a
(+)-(S)-1b
Racemic 1
8.14 1.10c
0.42 0.06b,c
0.76 0.09
17.62 1.86
1.48 0.12b
3.62 0.32
195 °C; ½a 2D5
ꢂ
+24.2 (c 0.5, acetone) [lit.7b mp 194–195 °C; ½a 2D2
ꢂ
+19.1 (c 0.556,
acetone)]; 1H NMR (400 MHz, DMSO-d6/CDCl3(1:1)) d 8.62 (s, br, 1H), 8.07 (s,
1H), 7.96 (d, J = 7 Hz, 1H), 7.64 (d, J = 8 Hz, 1H), 7.44–7.43 (m, 1H), 5.06 (s, 1H),
3.60 (s, 3H), 2.34 (s, 3H), 2.33 (s, 3H); ESI-MS m/z: 333 (M+H+); HREI-MS calcd
for C16H16N2O6 332.1008; Found 332.1021; IR (KBr): 3354, 1675, 1662, 1261,
1161, 766, 578 cmꢁ1. The 3-quinidine salt and optical isomer 3b was obtained
as a similar procedure mentioned above when using quinidine as resolution
a
Concentrations of 50% inhibition of [3H]-nitrendipine binding, each value rep-
resents the mean SD (n = 3).
b
P <0.01, compared with (ꢁ)-(R)-1a.
c
P <0.01, compared with cerebral cortex membrane.
agent. 3-quinidine salt: 43% yield. Mp 199–201 °C, ½a D25
ꢂ
+119.8(c 0.5, acetone).
(ꢁ)-(R)-3b: 93%yield. Mp 190–192 °C; ½a D25
ꢂ
ꢁ24.0 (c 0.5, acetone) [lit.7b mp
196–197 °C; ½a 2D2
ꢂ
ꢁ19.6 (c 0.542, acetone)]; ESI-MS m/z: 333 (M+H+); HREI-MS
lic acids 3, and cinchonidine and quinidine can be reused in the
next steps, which is amenable to scale-up for the production of
MN9202. This approach can be also used to synthesis of others chi-
ral dihydropyridines and open up a new field to investigate the chi-
rality influence in MN9202. The dihydropyridine receptor binding
assay demonstrated that the stereochemistry at C-4 is crucial and
S-enantiomer was defined as active isomer which is more potent
than R-enantiomer both in rat cardiac and cerebral cortex
membrane.
calcd for C16H16N2O6 332.1008; found 332.1016; the 1H NMR and IR spectra of
(ꢁ)-(R)-3b were identical to those of another enantiomer (+)-(S)-3a.
12. Recovering of cinchonidine and quinidine: To the corresponding aqueous layer
(obtained after treated with HCl) was added 40% NaOH. The resulted aqueous
layer (pH 10) was extracted with EtOAc. The combined organic layer was
washed with brine, dried over Na2SO4 and evaporated in vacuo to give
cinchonidine (93% yield) and quinidine (95% yield).
13. He, W.; Zhang, B.-L.; Jiang, R.; Liu, P.; Sun, X.-L.; Zhang, S.-Y. Tetrahedron Lett.
2006, 47, 5231.
14. Synthesis of (R) and (S)-3-methyl-5-pentyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4-
dihydropyridine-3,5-dicarboxylate: A suspension of (+)-3a (0.52 g, 1.5 mmol) in
CH2Cl2–DMF (4:1, 5 mL) was cooled at ꢁ20 °C in an ice-bath under N2, and
SOCl2 (0.2 g, 1.6 mmol) was added dropwise under this temperature. After
adding, the mixture was stirred for another 30 min. Then a solution of n-
pentanol in CH2Cl2 (2 mL) was added dropwise to the reaction mixture under
the same condition over a period of 10 min. The reaction mixture was stirred
for 9 h (TLC) and diluted with CH2Cl2 (50 mL) and wished with water (50 mL).
The organic layer was separated and the aqueous layer was extracted with
CH2Cl2 (30 mL ꢃ 3). The combined organic layer were washed with brine, dried
Acknowledgment
The financial support of this research by National Natural Sci-
ence Foundation of China (Nos. 20702063 and 30700887) is grate-
fully acknowledged.