J.-J. Park et al. / Bioorg. Med. Chem. Lett. 20 (2010) 814–818
817
Acknowledgments
This work was supported by the Korea Research Foundation
grant funded from the Korean Government (MOEHRD: KRF-2005-
070-C00078), and by a grant from the NIH/NIAID (RO1 AI45889).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.;
Koezuka, Y.; Kobayashi, E.; Fukushima, H. J. Med. Chem. 1995, 38, 2176.
2. Wu, D.; Fujio, M.; Wong, C.-H. Bioorg. Med. Chem. 2008, 16, 1073.
3. (a) Kronenberg, M. Annu. Rev. Immunol. 2005, 23, 877; (b) Savage, P. B.; Teyton,
L.; Bendelac, A. Chem. Soc. Rev. 2006, 35, 771; (c) Tsuji, M. Cell. Mol. Life Sci.
2006, 63, 1889; (d) Stronge, V. S.; Salio, M.; Jones, E. Y.; Cerundolo, V. Trends
Immunol. 2007, 28, 455.
4. (a) Kakimi, K.; Guidotti, L. G.; Koezuka, Y.; Chisari, F. V. J. Exp. Med. 2000, 192,
921; (b) Fuji, N.; Ueda, Y.; Fujiwara, H.; Itoh, T.; Yoshimura, T.; Yamagishi, H.
Clin. Cancer Res. 2000, 6, 3380; (c) Wang, B.; Geng, Y.-B.; Wang, C.-R. J. Exp. Med.
2001, 194, 313; (d) Van Kaer, L. Nat. Rev. Immunol. 2005, 5, 31.
5. (a) Motoki, K.; Kobayashi, E.; Uchida, T.; Fukushima, H.; Koezuka, Y. Bioorg.
Med. Chem. Lett. 1995, 5, 705; (b) Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.;
Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Konodo, E.; Koseki, H.;
Taniguchi, M. Science 1997, 278, 1626; (c) Brossay, L.; Naidenko, O.; Burdin, N.;
Matsuda, J.; Sakai, T.; Kronengerg, M. J. Immunol. 1998, 161, 5124; (d) Sidobre,
S.; Hammond, K. J. L.; Sidobre, L. B.; Maltsev, S. D.; Richardson, S. K.; Ndonye, R.
M.; Howell, A. R.; Sakai, T.; Besra, G. S.; Porcelli, S. A.; Kronenberg, M. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 12254; (e) Trappeniers, M.; Goormans, S.; Van
Beneden, K.; Decruy, T.; Linclau, B.; Al-Shamkhani, A.; Elliot, T.; Ottensmeier, C.;
Werner, J. M.; Elewaut, D.; Van Calenbergh, S. ChemMedChem 2008,
doi:10.1002/cmdc.200800021.
6. (a) Barbieri, L.; Costantino, V.; Fattorusso, E.; Mangoni, A.; Aru, E.; Parapini, S.;
Taramelli, D. Eur. J. Org. Chem. 2004, 468; (b) Barbieri, L.; Costantino, V.;
Fattorusso, E.; Mangoni, A.; Basilico, N.; Mondani, M.; Taramelli, D. Eur. J. Org.
Chem. 2005, 3279.
7. (a) Zhou, X.-T.; Forestier, C.; Goff, R. D.; Li, C.; Teyton, L.; Bendelac, A.; Savage, P.
B. Org. Lett. 2002, 4, 1267; (b) Xing, G.-W.; Wu, D.; Poles, M. A.; Horowitz, A.;
Tsuji, M.; Ho, D. D.; Wong, C.-H. Bioorg. Med. Chem. 2005, 13, 2907; (c) Wu, D.;
Xing, G.-W.; Poles, M. A.; Horowitz, A.; Kinjo, Y.; Sullivan, B.; Bodmer-
Narkevitch, V.; Plettenburg, O.; Kronenberg, M.; Tsuji, M.; Ho, D. D.; Wong, C.-
H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 1351.
8. (a) Miyamoto, K.; Miyake, S.; Yamamura, T. Nature 2001, 413, 531; (b) Goff, R.
D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C., III; Teyton, L.; Bendelac, A.;
Savage, P. B. J. Am. Chem. Soc. 2004, 126, 13602.
Figure 3. Dose dependence of production of IL-13, IL-4 and IFN-c by human NKT
cells in response to selected compounds. Human CD4+ NKT cell clone (HDD11) was
stimulated in cultures as described in Figure 2 using the indicated glycolipids at a
range of concentrations (black bar, 400 nM; hatched bar 100 nM; open bar 25 nM).
9. Yu, K. O. A.; Im, J. S.; Molano, A.; Dutronc, Y.; Illarionov, P. A.; Forestier, C.;
Fujiwara, N.; Arias, I.; Miyake, S.; Yamamura, T.; Chang, Y. T.; Besra, G. S.;
Porcelli, S. A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3383.
10. (a) Fujio, M.; Wu, D.; Garcia-Navarro, R.; Ho, D. D.; Tsuji, M.; Wong, C.-H. J. Am.
Chem. Soc. 2006, 128, 9022; (b) Chang, Y. J.; Huang, J. R.; Tsai, Y. C.; Hung, J. T.;
Wu, D.; Fujio, M.; Wong, C. H.; Yu, A. L. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
10299.
11. (a) Franck, R. W.; Tsuji, M. Acc. Chem. Rev. 2006, 39, 692; (b) Li, X.; Chen, G.;
Garcia-Navarro, R.; Franck, R. W.; Tsuji, M. Immunology 2008, 127, 216; (c) Li,
X.; Shiratsuchi, T.; Chen, G.; Dellabona, P.; Casorati, G.; Franck, R. W.; Tsuji, M. J.
Immunol. 2009, 183, 4415; (d) Tashiro, T.; Nakagawa, R.; Hirokawa, T.; Inoue,
S.; Watarai, H.; Taniguchi, M.; Mori, K. Bioorg. Med. Chem. 2009, 17, 6360.
12. Zajonc, D. M.; Cantu, C., III; Mattner, J.; Zhou, D.; Savage, P. B.; Bendelac, A.;
Wilson, I. A.; Teyton, L. Nat. Immunol. 2005, 6, 810.
summarizes IL-13 releasing activity of all analogues (at 400 nM
concentration), which was used as the primary screen since IL-13
production is known to be an extremely sensitive indicator of iNKT
cell activation.22 Panel A shows IL-13 production from a represen-
tative CD4+ T cell clone and Panel B shows a similar analysis using a
representative CD4ꢀ T-cell clone. A subset of compounds were ob-
served to be strongly stimulatory, while others were weakly active
or inactive. Figure 3 shows expanded analysis (IL-4, IL-13 and IFN-
c
) of a human CD4+ iNKT cell clone stimulated with various con-
centrations (400 nM, 100 nM and 25 nM) of the most active com-
pounds identified in the initial screen. Compounds such as 3d,
5a, 7b, 7c and 8b were highly active even at low dosage, and also
showed some selectivity toward stimulation of IL-13 (a Th2 cyto-
kine), whereas compound 2d showed activity more similar to
KRN7000. It is also of interest to note the relatively strong activity
13. Koch, M.; Stronge, V. S.; Shepherd, D.; Gadola, S. D.; Mathew, B.; Ritter, G.;
Fersht, A. R.; Besra, G. S.; Schmidt, R. R.; Jones, E. Y.; Cerundolo, V. Nat. Immunol.
2005, 6, 819.
14. (a) Borg, N. A.; Wun, K. S.; Kjer-Nielsen, L.; Wilce, M. C. J.; Pellicci, D. G.; Koh, R.;
Besra, G. S.; Bharadwaj, M.; Godfrey, D. I.; McCluskey, J.; Rossjohn, J. Nature
2007, 448, 44; (b) Fellici, D. G.; Patel, O.; Kjer-Nielsen, L.; Pang, S. S.; Sullivan, L.;
Kyparissoudis, K.; Brooks, A. G.; Reid, H. H.; Gras, S.; Lucet, I. S.; Koh, R.; Smyth,
M.; Mallevaey, T.; Matsuda, J. L.; Gapin, L.; McClusky, J.; Godfrey, D. I.;
Rossjohn, J. Immunity 2009, 31, 47.
15. Park, J. J.; Lee, J. H.; Ghosh, S. C.; bricard, G.; Venkataswamy, M. M.; Porcelli, S.
A.; Chung, S. K. Bioorg. Med. Chem. Lett. 2008, 18, 3906.
16. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.
S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem.
1992, 57, 2768.
of compounds 8a and 8b, which have a simple
a-amino alcohol
skeleton, indicating that the C3–OH group of the sphingosine skel-
eton was not essential for activity in this series of compounds. In
fact, the presence of an aromatic ring in the acyl chain of com-
pound 8a appeared to completely rescue any attenuation of activ-
ity due to the lack of a C3–OH group of the sphingosine skeleton. A
more extensive study of the biological activities of these KRN7000
analogues and further structural modifications including their con-
version to the carbasugar analogues are in progress.
17. Alper, P. B.; Hung, S. C.; Wong, C. H. Tetrahedron Lett. 1996, 34, 6029.
18. (a) Gervay, J.; Nguyen, T. N.; Hadd, M. L. Carbohydr. Res. 1997, 300, 119; (b) Du,
W.; Gervay-Hague, J. Org. Lett. 2005, 7, 2063.
19. Lee, A.; Farrand, K. J.; Dickgreber, N.; Hayman, C. M.; Jurs, S.; Hermansb, I. F.;
Painterra, G. F. Carbohydr. Res. 2006, 341, 2785.