C O M M U N I C A T I O N S
Table 2. Scope of the Reaction
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
References
(1) Selected reviews: (a) Zhang, Z.; Schreiner, P. R. Chem. Soc. ReV. 2009,
38, 1187. (b) Yu, X.; Wang, W. Chem. Asian J. 2008, 3, 516. (c) Doyle,
A. G.; Jacobsen, E. N. Chem. ReV. 2007, 107, 5713. (d) Taylor, M. S.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520. (e) Connon, S. J.
Chem.sEur. J. 2006, 12, 5418. (f) Akiyama, T.; Itoh, J.; Fuchibe, K. AdV.
Synth. Catal. 2006, 348, 999. (g) Takemoto, Y. Org. Biomol. Chem. 2005,
3, 4299. (h) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289.
(2) (a) Akalay, D.; Du¨rner, G.; Bats, J. W.; Bolte, M.; Go¨bel, M. W. J. Org.
Chem. 2007, 72, 5618. (b) Tsogoeva, S. B.; Du¨rner, G.; Bolte, M.; Go¨bel,
M. W. Eur. J. Org. Chem. 2003, 1661. (c) Schuster, T.; Bauch, M.; Du¨rner,
G.; Go¨bel, M. W. Org. Lett. 2000, 2, 179. (d) Schuster, T.; Kurz, M.; Go¨bel,
M. W. J. Org. Chem. 2000, 65, 1697.
entry
R1
R2
temp (°C) product yield (%)a
era
1b
2
3
H
H
H
H
H
H
H
H
H
H
H
H
4-Br-Ph
3-Br-Ph
2-Br-Ph
4-Cl-Ph
4-F-Ph
4-MeO-Ph
3-MeO-Ph
2-MeO-Ph
4-Me-Ph
1-naphthyl
3-furyl
Me
-55
-65
-65
-55
-50
-50
-55
-55
-50
-50
-40
-65
-60
-60
-60
-65
-40
0
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
3l
3m
3n
3o
3p
3q
4
65
80
74
88
83
70
75
75
80
74
50
88
90
90
65
69
55
70
10
97:3
97:3
95:5
96:4
95:5
92:8
96:4
98:2
95:5
96:4
91:9
91:9
96:4
97:3
90:10
95:5
85:15
60:40
60:40
4
5
6c
7
8c
9
(3) (a) Uraguchi, D.; Nakashima, D.; Ooi, T. J. Am. Chem. Soc. 2009, 131,
7242. (b) Uraguchi, D.; Ueki, Y.; Ooi, T. Science 2009, 326, 120. (c)
Uraguchi, D.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 14088.
(4) Selected references: (a) Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.;
Liu, H.; Wang, J.; Tan, C.-H. Angew. Chem., Int. Ed. 2009, 48, 7387. (b)
Takada, K.; Nagasawa, K. AdV. Synth. Catal. 2009, 351, 345. (c) Uyeda,
C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 9228. (d) Sohtome, Y.;
Hashimoto, Y.; Nagasawa, K. AdV. Synth. Catal. 2005, 347, 1643.
(5) (a) Singh, A.; Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866. (b) Shen,
B.; Johnston, J. N. Org. Lett. 2008, 10, 4397. (c) Wilt, J. C.; Pink, M.;
Johnston, J. N. Chem. Commun. 2008, 4177. (d) Singh, A.; Yoder, R. A.;
Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466. (e) Hess,
A. S.; Yoder, R. A.; Johnston, J. N. Synlett 2006, 147. (f) Nugent, B. M.;
Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418.
(6) Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464.
(7) (a) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem., Int. Ed. 2010,
49, 153. (b) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc.
2008, 130, 14416.
10
11
12
13
14
15
5-MeO
5-Me
6-Me
Ph
Ph
Ph
Me
16d 5-MeO
17
18e 1-Me-indole Ph
19f
1-Me-indole Ph
2-Et-pyrrole Ph
5
0
5
a Determined after oxidation. b 36 h reaction. c 48 h reaction. d 1
mmol scale. e With 1a (10 mol %). f 72 h reaction.
(8) Selected reference: Zhuang, W.; Poulsen, T. B.; Jørgensen, A. K. Org.
Biomol. Chem. 2005, 3, 3284.
(9) Selected base catalysts that can participate in dual H-bonding interactions: (a)
Rabalakos, C.; Wulff, W. D. J. Am. Chem. Soc. 2008, 130, 13524. (b)
Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 128, 16044. (c)
Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157.
(10) Selected recent reports on beneficial effects of increased catalyst acidity: (a)
Jensen, K. H.; Sigman, M. S. Angew. Chem., Int. Ed. 2007, 46, 4748. (b)
Wittkopp, A.; Schreiner, P. R. Chem.sEur. J. 2003, 9, 407.
(11) Selected chiral (thio)ureas with increased acidity: (a) Tan, K. L.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2007, 46, 1315. (b) Robak, M. T.; Trincado,
M.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 15110. Other approaches,
see refs 2-8.
(12) Akiyama, T. Chem. ReV. 2007, 107, 5744.
Figure 1. ORTEP of 2-(1-adamantylamino)-1-azahelicene ·HCl.
(13) Takenaka, N.; Sarangthem, R. S.; Seerla, S. K. Org. Lett. 2007, 9, 2819.
(14) Takenaka, N.; Sarangthem, R. S.; Captain, B. Angew. Chem., Int. Ed. 2008,
47, 9708.
The utility of the method was demonstrated by the asymmetric
synthesis of monoamine oxidase (MAO) inhibitor 6, which was,
to our knowledge, previously prepared only in racemic form (eq
1).22b Enantio-enriched 6 was readily synthesized from addition
product 3q (Table 2, entry 16) in two steps with 74% overall yield.
(15) Carbohelicenes as asymmetric catalysts: (a) Sato, I.; Yamashima, R.;
Kadowaki, K.; Yamamoto, J.; Shibata, T.; Soai, K. Angew. Chem., Int.
Ed. 2001, 40, 1096. (b) Dreher, S. D.; Katz, T. J.; Lam, K.-C.; Rheingold,
A. L. J. Org. Chem. 2000, 65, 815. (c) Reetz, M. T.; Sostmann, S. J.
Organomet. Chem. 2000, 603, 105. (d) Reetz, M. T.; Beuttenmu¨ller, E. W.;
Goddard, R. Tetrahedron Lett. 1997, 38, 3211.
(16) Catalyst preparation: Supporting Information.
(17) Sheng, Y.-F.; Li, G.-Q.; Kang, Q.; Zhang, A.-J.; You, S.-L. Chem.sEur.
J. 2009, 15, 3351.
(18) Selected references for 4,7-dihydroindole additions to other electrophiles: (a)
Evans, D. A.; Fandrick, K. R. Org. Lett. 2006, 8, 2249. (b) C¸ avdar, H.;
Sarac¸oglu, N. Tetrahedron 2005, 61, 2401.
(19) Enantioselective pyrrole additions to nitroalkenes: (a) Yokoyama, N.; Arai,
T. Chem. Commun. 2009, 3285. (b) Sheng, Y.-F.; Gu, Q.; Zhang, A.-J.;
You, S.-L. J. Org. Chem. 2009, 74, 6899. (c) Liu, H.; Lu, S.-F.; Xu, J.;
Du, D.-M. Chem. Asian. J. 2008, 3, 1111. (d) Trost, B. M.; Mu¨ller, C.
J. Am. Chem. Soc. 2008, 130, 2438.
(20) Selected references: (a) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem.,
Int. Ed. 2008, 47, 4016. (b) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci,
A. Angew. Chem., Int. Ed. 2005, 44, 6576. A recent review: (c) Catalytic
Asymmetric Friedel-Crafts Alkylations; Bandini, M.; Umani-Ronchi, A.,
Eds.; Wiley-VCH: Weinheim, 2009.
(21) A recent review: Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem.
2007, 2561.
In summary, the results presented above show two things: (1)
The 2-aminopyridinum ion functions as a highly efficient catalyst
without additional complementary functionalities with which many
(thio)urea catalysts are associated.1,20b Therefore, it is a powerful
dual H-bonding motif on which to build chiral catalysts. (2)
1-Azahelicenes are effective chiral scaffolds for the construction
of catalyst structures that are otherwise difficult to access. These
new catalysts are currently being evaluated in a number of other
transformations.
(22) Examples of biologically active compounds: (a) Napper, A. D.; et al. J. Med.
Chem. 2005, 48, 8045. (b) Garc´ıa, C. F.; Marco, J. L.; Alvarez, E. F.
Tetrahedron 1992, 48, 6917. (c) Abou-Gharbia, M.; Patel, Y. R.; Webb,
M. B.; Moyer, J. A.; Andree, T. H.; Muth, E. A. J. Med. Chem. 1987, 30,
1818. Examples of natural products: (d) Lim, K.-H.; Kam, T.-S. Tetrahedron
Lett. 2009, 50, 3756. (e) Hirasawa, Y.; Miyama, S.; Hosoya, T.; Koyama,
K.; Rahman, A.; Kusumawati, I.; Zaini, N. C.; Morita, H. Org. Lett. 2009,
11, 5718. (f) Kim, K. H.; Park, K. M.; Choi, S. U.; Lee, K. R. J. Antibiot.
2009, 62, 335.
Acknowledgment. We thank the Florida Department of Health
(07KN-12), the American Cancer Society (IRG-98-277-07), the
Sylvester Comprehensive Cancer Center, and the University of
Miami for support.
(23) Terada, M.; Ikehara, T.; Ube, H. J. Am. Chem. Soc. 2007, 129, 14112.
JA100539C
9
J. AM. CHEM. SOC. VOL. 132, NO. 13, 2010 4537