S. pneumoniae.8 Zwitterionic polysaccharide A1 (PS A1 (1);
Figure 1) found in B. fragilis is the putative cause of
postoperative intra-abdominal abscesses in humans and has
been shown to activate a MHCII-mediated T-cell response
in the absence of proteins.9 As a potential immunostimulant,
PS A1 when conjugated to tumor-associated antigen Tn (D-
GalNAc) has been shown to promote a T-cell-dependent
immune response against Tn in mice.10 Due to the im-
munological properties of PS A1 and related ZPSs,9-11 the
development of efficient syntheses for AAT building blocks
in order to access homogeneous ZPS fragments for im-
munological study remains important.
equatorial azide via an azido nitration reaction of glycal 3.
The carbon skeleton of this glycal could be generated by a
Dieckmann cyclization of acetate 4 that is derived in two
steps from N-Cbz-L-threonine.
Scheme 2. Synthesis of Glycal 3
The synthesis of glycal 3 commenced with acid mediated
methyl ester formation of N-Cbz-L-threonine 5 (Scheme 2).
The resulting alcohol was acetylated to furnish acetate 4 in
95% yield over two steps. Two equivalents15 of LHMDS
were used to deprotonate the acetate and NHCbz groups to
induce a Dieckmann cyclization.16 The crude ꢀ-ketoester was
methylated with K2CO3/Me2SO4 to provide enone 6 in 73%
yield over two steps. Methoxy enone 6 was then reduced
with DIBAL in a 1,2 manner and upon acidic workup,
rearranged to an intermediate enone.17 Luche reduction18 of
the crude enone at -78 °C gave glycal 7 in 77% yield over
two steps. The free hydroxyl group was finally protected as
an acetate ester to afford glycal 3 in 90% yield.
Figure 1. B. fragilis zwitterionic polysaccharide A1 (1).
Previous syntheses12 of AAT building blocks originate
either from glucosamine or mannose and are quite lengthy.
Shorter syntheses13 provide building blocks with a participa-
tory C2-nitrogen protecting group and thus cannot be used
to form R-linked AAT disaccharides such as the one found
in PS A1. We felt that a de novo approach14 would reduce
the number of steps required to generate a properly func-
tionalized AAT building block for PS A1. Here we report a
de novo synthesis of an AAT glycosylating agent, and its
use in the assembly of a PS A1 disaccharide fragment.
At this stage, azido functionalization of glycal 3 was
attempted. Azido nitration12b,19 generated azido nitrate 8 in
67% yield as an inseparable 3.5:1 C2-diastereomeric mixture
that favored the desired equatorial azide (Table 1, entry 1).
Scheme 1. Retrosynthetic Analysis of AAT Building Block 2
(12) (a) Hermans, J. P. G.; Elie, C. J. J.; van der Marel, G. A.; van
Boom, J. H. J. Carbohydr. Chem. 1987, 6, 451. (b) Smid, P.; Jo¨rning,
W. P. A.; van Duuren, A. M. G.; Boons, G. J. P. H.; van der Marel, G. A.;
van Boom, J. H. J. Carbohydr. Chem. 1992, 11, 849. (c) van den Bos,
L. J.; Boltje, T. J.; Provoost, T.; Mazurek, J.; Overkleeft, H. S.; van der
Marel, G. A. Tetrahedron Lett. 2007, 48, 2697.
(13) (a) Liav, A.; Jacobson, I.; Sheinblatt, M.; Sharon, N. Carbohydr.
Res. 1978, 66, 95. (b) Lo¨nn, H.; Lo¨nngren, J. Carbohydr. Res. 1984, 132,
39. (c) Medgyes, A.; Farkas, E.; Lipta´k, A.; Pozsgay, V. Tetrahedron 1997,
53, 4159. (d) Liang, H; Grindley, T. B. J. Carbohydr. Chem. 2004, 23, 71.
(e) Cai, Y.; Ling, C.-C.; Bundle, D. R. J. Org. Chem. 2009, 74, 580.
(14) For recent de novo carbohydrate syntheses from our laboratory,
see: (a) Timmer, M. S. M.; Adibekian, A.; Seeberger, P. H. Angew. Chem.,
Int. Ed. 2005, 44, 7605. (b) Adibekian, A.; Bindscha¨dler, P.; Timmer,
M. S. M.; Noti, C.; Schu¨tzenmeister, N.; Seeberger, P. H. Chem.sEur. J.
2007, 13, 4510. (c) Stallforth, P.; Adibekian, A.; Seeberger, P. H. Org.
Lett. 2008, 10, 1573. (d) Adibekian, A.; Timmer, M. S. M.; Stallforth, P.;
van Rijn, J.; Werz, D.; Seeberger, P. H. Chem. Commun. 2008, 3549.
(15) Ge, P.; Kirk, K. L. J. Org. Chem. 1996, 61, 8671.
In the retrosynthetic analysis of AAT building block 2
(Scheme 1), we envisioned the installation of the C2-
(8) Karlsson, C.; Jansson, P.-E.; Sørensen, U. B. S. Eur. J. Biochem.
1999, 265, 1091, and references cited within.
(9) For selected reviews and studies on zwitterionic polysaccharides,
see: (a) Tzianabos, A.; Wang, J. Y.; Kasper, D. L. Carbohydr. Res. 2003,
338, 2531. (b) Mazmanian, S. K.; Kasper, D. L. Nat. ReV. Immunol. 2006,
6, 849. (c) Mazmanian, S. K.; Round, J. L.; Kasper, D. L. Nature 2008,
453, 620.
(16) Ren, F.; Hogan, P. C.; Anderson, A. J.; Myers, A. G. Org. Lett.
2007, 9, 1923.
(10) De Silva, R. A.; Wang, Q.; Chidley, T.; Appulage, D. K.; Andreana,
P. R. J. Am. Chem. Soc. 2009, 131, 9622.
(17) Kocienski, P.; Narquizian, R.; Raubo, P.; Smith, C.; Farrugia, L. J.;
Muir, K.; Boyle, F. T. J. Chem. Soc., Perkin Trans. 1 2000, 2357.
(18) Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226.
(11) For a review on cell-wall glycopolymers, see: Weidenmaier, C.;
Peschel, A. Nat. ReV. Microbiol. 2008, 6, 276
.
(19) Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244.
Org. Lett., Vol. 12, No. 7, 2010
1625