A. Noor, G. Glatz, R. Müller, M. Kaupp, S. Demeshko, R. Kempe
SHORT COMMUNICATION
[11] G. La Macchia, F. Aquilante, V. Veryazov, B. O. Roos, L.
Gagliardi, Inorg. Chem. 2008, 47, 11455Ϫ11457.
[12] R. Wolf, C. Ni, T. Nguyen, M. Brynda, G. J. Long, A. D.
Sutton, R. C. Fischer, J. C. Fettinger, M. Hellman, L. Pu, P. P.
Power, Inorg. Chem. 2007, 46, 11277Ϫ11290.
In conclusion we introduced the coordination compound
showing the shortest metalϪmetal bond observed yet and
emphasise the importance of the ligand and its steric fine
tuning to observe such short CrϪCr bonds.
[13] A. Noor, F. R. Wagner, R. Kempe, Angew. Chem. 2008, 120,
7356Ϫ7359; Angew. Chem. Int. Ed. 2008, 47, 7246Ϫ7249.
[14] Y.-C. Tsai, C.-W. Hsu, J.-S. K. Yu, G.-H. Lee, Y. Wang, T.-S.
Kuo, Angew. Chem. 2008, 120, 7250Ϫ7253; Angew. Chem. Int.
Ed. 2008, 47, 7250Ϫ7253.
Supporting Information (see footnote on the first page of this
article): Experimental details of the complex syntheses and charac-
terisation of the SQUID measurements and details of the
calculations.
[15] C.-W. Hsu, J.-S. K. Yu, C.-H. Yen, G.-H. Lee, Y. Wang, Y.-Ch.
Tsai, Angew. Chem. 2008, 120, 10081Ϫ10084; Angew. Chem.
Int. Ed. 2008, 47, 9933Ϫ9936.
References
[16] S. Ge, A. Meetsma, B. Hessen, Organometallics 2008, 27,
313Ϫ3135.
[1] G. Frenking, R. Tonner, Nature 2007, 446, 276Ϫ277.
[2] T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J.
Long, P. P. Power, Science 2005, 310, 844Ϫ847.
[3] The role of metalϪmetal bonds, magnetic coupling ligand arte-
facts and the questionable strength in quadruply bonded chro-
mium complexes possessing supershort CrϪCr distance was
reviewed in: J. J. H. Edema, S. Gambarotta, Inorg. Chem. 1991,
11, 195Ϫ214.
˚
[17] Guanidinates were recently used to break the 1.80 A barrier of
the CrϪCr multiple bond between CrII atoms S. Horvath, S. I.
Gorelsky, S. Gambarotta, I. Korobkov, Angew. Chem. Int. Ed.
2008, 47, 9937Ϫ9940.
˚
¯
[18] P1; a ϭ 18.0850(17), b ϭ 18.1010(17), c ϭ 18.1180(2) A;
Ͱ ϭ 75.711(8), β ϭ 76.094(8), γ ϭ 89.885(5)°; R1 ϭ 0.0626 ,
wR2 (all data) ϭ 0.1315.
˚
[19] Pccn; a ϭ 13.4340(8), b ϭ 19.7350(11), c ϭ 19.8000(13) A; Ͱ ϭ
[4] F. A. Cotton, S. A. Koch, Inorg. Chem. 1978, 17, 2021Ϫ2024.
[5] F. Hein, D. Tille, Z. Anorg. Allg. Chem. 1964, 329, 72Ϫ82.
[6] Interestingly, a little more than a month before a homobimet-
allic CrII compound with a CrϪCr distance of the same length
β ϭ γ ϭ 90.00°; R1 ϭ 0.0490 [I > 2σ(I)], wR2 (all data) ϭ
0.0932.
[20] O. Kahn, Molecular Magnetism, VCH, New York, 1996, pp.
380.
˚
1.828(2) A, tetrakis(2-methoxy-5-methylphenyl)dichromium
[21] All structure optimisations were carried out at BP86/TZVP
DFT level. NPA and ELF analyses were based on single point
calculations at B3LYP/TZVPP level.
was submitted. It appeared in print one issue later: F. A. Cot-
ton, S. A. Koch, M. Millar, Inorg. Chem. 1978, 17, 2084Ϫ2086.
The metalϪmetal distances in both compounds are statistically
indistinguishable from each other and the formal bond order
is four.
[22] See for instance: A. E. Reed, L. A. Curtiss, F. Weinhold, Chem.
Rev. 1988, 88, 899Ϫ926.
[23] A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92,
[7] V. E. Bondybey, J. H. English, Chem. Phys. Lett. 1983, 94,
5397Ϫ5403.
443Ϫ447.
[24] The employed model structure was based on X-ray structure
data of 3, but the positions of all hydrogen atoms were op-
timised.
[8] Spectroscopy of flash photolysis products of Cr(CO)6 are in-
dicative of the same distance: Yu. M. Efremov, A. N. Samo-
ilova, L. V. Gurvich, Opt. Spectrosk. 1974, 36, 654Ϫ657.
[9] B. O. Roos, Collect. Czech. Chem. Commun. 2003, 68,
265Ϫ274.
[25] K. B. Wiberg, Tetrahedron 1968, 24, 1083Ϫ1096.
[10] K. A. Kreisel, G. P. A. Yap, O. Dmitrenko, C. R. Landis, K.
H. Theopold, J. Am. Chem. Soc. 2007, 129, 14162Ϫ14163.
Received: February 26, 2009
Published Online: May 11, 2009
1152
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2009, 1149Ϫ1152