isomerization,5 but this instead decreased the regioselectivity
while the enantioselectivity was retained (run 12). To our
knowledge, the enantiomeric excess for the hydroformylation
of 2,5-dihydrofuran obtained with ligand 7c (91%) is the
highest ever reported, and importantly, it coincides with
excellent regioselectivity (499.95%).
Notes and references
z A simple PM3 model suggested that the 3,30 position on the
(octahydro)binol in 7 should be the most influential position to
control the selectivity and that increasing steric bulk around this
position might induce high enantioselectivities. Based on these
leads we designed the tuneable, hybrid phosphine–phosphonite
ligands 7a–c.
Riding high on the excellent catalyst performance, we
set out to assess the ligands 7a–c in the asymmetric hydro-
formylation of 2,3-dihydrofuran. The important findings are
also summarized in Table 1. Overall, substrate 2 was found to
be less reactive than 1 and the regioselectivity in all cases
stayed almost constant at 80 : 20 (3/4). Ligands 7a and 7b were
again outperformed by 7c (runs 13–15). Further optimization
was performed using ligand 7c, and the conversion improved
significantly at higher temperatures, although at the expense of
a slightly lower enantioselectivity (runs 15–17). Next, the effect
of syngas pressure was studied. An excellent enantioselectivity
(91%) with the best regio-control (80 : 20) was achieved at
25 bars (run 17), while either lower or higher pressures resulted
in decreased selectivities (runs 15, 16 and 18, 19). Prolonged
reaction times at 45 1C improved the conversion to 69%,
although the enantioselectivity dropped to 81% (run 19).
Interestingly, the sense of enantioselection in 1 and 2 is
opposite in nature, i.e. the absolute configuration of the
predominant enantiomer obtained from 1 is S, while that
obtained from 2 is R (ESIw). This is important as it explains
why isomerization side reactions can directly deteriorate the ee
of the product that is formed.
1 K. Nozaki, Comprehensive Asymmetric Catalysis, Springer,
Heidelberg, 1999; P. W. N. M. van Leeuwen and C. Claver,
Rhodium Catalysed Hydroformylation, Kluwer Academic Press,
Dordrecht, 2000.
2 F. Agbossou, J. F. Carpentier and A. Mortreux, Chem. Rev., 1995,
95, 2485.
3 D. E. Vietti, U.S. Patent, 4 376 208, 1983; A. Polo, J. Real,
C. Claver, S. Castillon and J. C. Bayon, J. Chem. Soc., Chem.
Commun., 1990, 600; I. del Rio, P. W. N. M. van Leeuwen and
C. Claver, Can. J. Chem., 2001, 79, 560.
4 M. Zhang, J. Tamiya, L. Nguyen, M. W. Rowbottom, B. Dyck,
T. D. Vickers, J. Grey, D. A. Schwarz, C. E. Heise, J. Haelewyn,
M. S. Mistry and V. S. Goodfellow, Bioorg. Med. Chem. Lett.,
2007, 17, 2535; E. Koichi, S. Kenichi, K. Toshio, O. Shuji,
K. Tatsuo, S. Hiroshi and M. Michihiko, JP, 11 060 567, 1999;
G. D. Zhu, V. B. Gandhi, J. Gong, S. Thomas, Y. Luo, X. Liu,
Y. Shi, V. Klinghofer, E. F. Johnson, D. Frost, C. Donawho,
K. Jarvis, J. Bouska, K. C. Marsh, S. H. Rosenberg, V. L. Giranda
and T. D. Penning, Bioorg. Med. Chem. Lett., 2008, 18, 3955.
5 T. Horiuchi, T. Ohta, E. Shirakawa, K. Nozaki and H. Takaya,
J. Org. Chem., 1997, 62, 4285; M. Dieguez, O. Pamies and
C. Claver, Chem. Commun., 2005, 1221; J. Mazuela, M. Coll,
O. Pamies and M. Dieguez, J. Org. Chem., 2009, 74, 5440.
6 M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer,
P. W. N. M. van Leeuwen, K. Goubitz and J. Fraanje, Organo-
metallics, 1995, 14, 3081; L. A. van der Veen, P. H. Keveen,
G. C. Schoemaker, J. N. H. Reek, P. C. J. Kamer,
P. W. N. M. van Leeuwen, M. Lutz and A. L. Spek, Organo-
metallics, 2000, 19, 872; L. A. van der Veen, M. D. K. Boele,
F. R. Bregman, P. C. J. Kamer, P. W. N. M. van Leeuwen,
K. Goubitz, F. Fraanje, H. Schenk and C. Bo, J. Am.
Chem. Soc., 1999, 120, 11616; M. N. Birkholz, Z. Freixa and
P. W. N. M. van Leeuwen, Chem. Soc. Rev., 2009, 38, 1099;
P. C. J. Kamer, P. W. N. M. van Leeuwen and J. N. H. Reek,
Acc. Chem. Res., 2001, 34, 895.
In conclusion, we report a new class of xanthene based,
hybrid phosphine–phosphonite ligands that are easy to modify.
In situ high pressure NMR spectroscopy showed that the two
phosphorus nuclei predominantly occupy bis-equatorial posi-
tions, in contrast to most related chiral hybrid bidentate
ligands such as BINAPHOS. On the other hand, this mode
of coordination is in line with previous xanthene based
ligands.11 The performance of the novel ligands was evaluated
in the asymmetric hydroformylation of notoriously difficult
2,3- and 2,5-dihydrofuran substrates. The hybrid ligand 7c was
undoubtedly the best among the three and displayed excellent
performance. Employing 7c, an unprecedented high enantio-
meric excess (91%) was obtained in the hydroformylation of 1
along with excellent regio-selectivities. Similarly, an ee of
91% and good regioselectivity (80 : 20) was obtained in the
asymmetric hydroformylation of 2 using ligand 7c, which
clearly outperforms other systems reported for this substrate.
A remarkable observation is that both enantiomers of product
3 are accessible using the same catalyst, simply by changing the
substrate from 2,5- to 2,3-dihydrofuran. In addition, this
phenomenon implies the necessity to suppress isomerization,
as this will lead to a dramatic decrease in selectivity. We are
currently further exploring the substrate scope of this new
class of catalysts.
7 J. Wassenaar, S. van Zutphen, G. Mora, P. Le Floch,
M. A. Siegler, A. L. Spek and J. N. H. Reek, Organometallics,
2009, 28, 2724; J. Wassenaar, M. Kuil and J. N. H. Reek, Adv.
Synth. Catal., 2008, 350, 1610; J. Wassenaar and J. N. H. Reek,
Dalton Trans., 2007, 3750; Y. Yan and X. Zhang, J. Am. Chem.
Soc., 2006, 128, 7198; M. Weis, C. Waloch, W. Seiche and B. Breit,
J. Am. Chem. Soc., 2006, 128, 4188; M. T. Reetz and A. Gosberg,
Tetrahedron: Asymmetry, 1999, 10(11), 2129; J. Wassenaar and
J. N. H. Reek, J. Org. Chem., 2009, 74, 8403.
8 L. A. van der Veen, P. K. Keeven, P. C. J. Kamer and
P. W. N. M. van Leeuwen, Chem. Commun., 2000, 333.
9 Similar chemical shifts for xanthene based bis-aminophosphines
and diphosphonites have been previously reported; W. Goertz,
P. C. J. Kamer, P. W. N. M. van Leeuwen and D. Vogt,
Chem.–Eur. J., 2001, 7(8), 1614; J. I. van der Vlugt,
A. C. Hewat, S. Neto, R. Sablong, A. M. Mills, M. Lutz,
A. L. Spek, C. Muller and D. Vogt, Adv. Synth. Catal., 2004,
¨
346, 993; J. I. van der Vlugt, R. Sablong, A. M. Mills,
H. Kooijman, A. L. Spek, A. Meetsma and D. Vogt, Dalton
Trans., 2003, 4690.
10 Synthesis of 7a and 7b proceeds smoothly, whereas a catalytic
amount of tetrazole as a protonating agent was necessary to
prepare 7c, see ESIw.
This work is part of the Research Program of the Dutch
Polymer Institute DPI, projectnr. #656 and is also financially
supported by the European Commission [RTN Network (R)
Evolutionary Catalysis MRTN-CT-2006035866].
11 J. I. van der Vlugt, R. Sablong, P. C. M. M. Magusin, A. M. Mills,
A. Spek and D. Vogt, Organometallics, 2004, 23, 3177.
12 K. Nozaki, N. Sakai, T. Nanno, T. Higashijima, S. Mano,
T. Horiuchi and H. Takaya, J. Am. Chem. Soc., 1997, 119,
4413.
ꢁc
This journal is The Royal Society of Chemistry 2010
1246 | Chem. Commun., 2010, 46, 1244–1246