M. S. Yusubov, V. V. Zhdankin et al.
SHORT COMMUNICATION
247–272; t) V. V. Zhdankin, J. D. Protasiewicz, Coord. Chem.
Rev. 2014, 275, 54–62.
M. S. Yusubov, D. Y. Svitich, M. S. Larkina, V. V. Zhdankin,
solved by the Patterson method (SHELXS 86) and was refined by
full-matrix least-squares refinement on F2 by using the Crystals
for Windows program. Crystal data for (4-triisopropylsilylphenyl)
[2]
[3]
ARKIVOC 2013, i, 364–395.
phenyliodonium bromide: C21H30BrISi,
M = 517.36, a =
J. V. Crivello, K. Dietliker, Photoinitiators for Free Radical Cat-
ionic & Anionic Photopolymerisation, Wiley, Chichester, UK,
1998.
9.07770(10) Å, b = 14.3030(2) Å, c = 35.499(3) Å, α = 90.00°, β =
90.00°, γ = 90.00°, V = 4609.1(3), Rf = 4.54.
CCDC-1061829 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[4]
[5]
C. H. Park, S. Takahara, T. Yamaoka, Polym. Adv. Technol.
2006, 17, 156–162.
A. Shirai, H. Kubo, E. Takahashi, J. Photopolym. Sci. Technol.
2002, 15, 29–34.
C. Ruecker, Chem. Rev. 1995, 95, 1009–1064.
[6]
[7]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data of the prod-
ucts, crystallographic data, and copies of the 1H NMR and
13C NMR spectra.
For representative publications on activated iodosylarenes, see:
a) M. Saito, K. Miyamoto, M. Ochiai, Chem. Commun. 2011,
47, 3410–3412; b) K. Miyamoto, Y. Yokota, T. Suefuji, K. Ya-
maguchi, T. Ozawa, M. Ochiai, Chem. Eur. J. 2014, 20, 5447–
5453; c) A. Yoshimura, K. C. Nguyen, S. C. Klasen, A. Saito,
V. N. Nemykin, V. V. Zhdankin, Chem. Commun. 2015, 51,
7835–7838; d) M. S. Yusubov, R. Y. Yusubova, T. V. Funk, K.-
W. Chi, A. Kirschning, V. V. Zhdankin, Synthesis 2010, 3681–
3685; e) M. S. Yusubov, R. Y. Yusubova, T. V. Funk, K.-W.
Chi, V. V. Zhdankin, Synthesis 2009, 2505–2508; f) V. N. Nemy-
kin, A. Y. Koposov, B. C. Netzel, M. S. Yusubov, V. V. Zhdan-
kin, Inorg. Chem. 2009, 48, 4908–4917; g) A. Y. Koposov, B. C.
Netzel, M. S. Yusubov, V. N. Nemykin, A. Y. Nazarenko, V. V.
Zhdankin, Eur. J. Org. Chem. 2007, 4475–4478.
Acknowledgments
This work was supported by a research grant from the National
Science Foundation (NSF), U.S.A. (CHE-1262479) and by a NSF
instrumentation grant (MRI-0922366). M. S. Y. and D. Y. S. are
also thankful to the Ministry of Education and Science of Russian
Federation (project “Science” number 4.2569.2014/K).
[8] T. Gan, S. G. Van Ornum, J. M. Cook, Tetrahedron Lett. 1997,
[1] For selected books and review on hypervalent iodine chemistry,
see: a) V. V. Zhdankin, Hypervalent Iodine Chemistry: Prepara-
tion, Structure, and Synthetic Applications of Polyvalent Iodine
Compounds, Wiley, Chichester, UK, 2013; b) T. Kaiho (Ed.),
Iodine Chemistry and Applications, Wiley, Chichester, UK,
2014; c) T. Wirth (Ed.), Topics in Current Chemistry, vol. 224:
Hypervalent Iodine Chemistry – Modern Developments in Or-
ganic Synthesis, Springer, Berlin, 2003; d) F. V. Singh, T. Wirth,
Chem. Asian J. 2014, 9, 950–971; e) M. Brown, U. Farid, T.
Wirth, Synlett 2013, 24, 424–431; f) V. V. Zhdankin, P. J. Stang,
Chem. Rev. 2008, 108, 5299–5358; g) T. Dohi, Y. Kita, Chem.
Commun. 2009, 2073–2085; h) M. S. Yusubov, V. V. Zhdankin,
38, 8453–8456.
[9] a) J.-H. Chun, S. Lu, Y.-S. Lee, V. W. Pike, J. Org. Chem. 2010,
75, 3332–3338; b) J.-H. Chun, S. Lu, V. W. Pike, Eur. J. Org.
Chem. 2011, 4439–4447; c) M. A. Carroll, V. W. Pike, D. A.
Widdowson, Tetrahedron Lett. 2000, 41, 5393–5396; d) J.-H.
Chun, V. W. Pike, J. Org. Chem. 2012, 77, 1931–1938; e) S. Telu,
J.-H. Chun, F. G. Simeon, S. Lu, V. W. Pike, Org. Biomol.
Chem. 2011, 9, 6629–6638; f) B. C. Lee, J. S. Kim, B. S. Kim,
J. Y. Son, S. K. Hong, H. S. Park, B. S. Moon, J. H. Jung, J. M.
Jeong, S. E. Kim, Bioorg. Med. Chem. 2011, 19, 2980–2990; g)
B. S. Moon, H. S. Kil, J. H. Park, J. S. Kim, J. Park, D. Y. Chi,
B. C. Lee, S. E. Kim, Org. Biomol. Chem. 2011, 9, 8346–8355.
Mendeleev Commun. 2010, 20, 185–191; i) M. S. Yusubov, A. V. [10] a) M. Ochiai, Y. Kitagawa, N. Takayama, Y. Takaoka, M.
Maskaev, V. V. Zhdankin, ARKIVOC 2011, i, 370–409; j) M.
Uyanik, K. Ishihara, Chem. Commun. 2009, 2086–2099; k)
M. S. Yusubov, V. N. Nemykin, V. V. Zhdankin, Tetrahedron
2010, 66, 5745–5752; l) A. Duschek, S. F. Kirsch, Angew.
Shiro, J. Am. Chem. Soc. 1999, 121, 9233–9234; b) M. Ochiai,
Y. Takaoka, Y. Masaki, Y. Nagao, M. Shiro, J. Am. Chem. Soc.
1990, 112, 5677–5678; c) M. Ochiai, Y. Kitagawa, M. Toyonari,
ARKIVOC 2003, vi, 43–48.
Chem. Int. Ed. 2011, 50, 1524–1552; Angew. Chem. 2011, 123, [11] a) K. M. Lancer, G. H. Wiegand, J. Org. Chem. 1976, 41, 3360–
1562–1590; m) V. V. Zhdankin, J. Org. Chem. 2011, 76, 1185–
1197; n) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed.
2009, 48, 9052–9070; Angew. Chem. 2009, 121, 9214–9234; o)
S. Quideau, T. Wirth, Tetrahedron 2010, 66, 5737–5738; p) M.
Ochiai, K. Miyamoto, Eur. J. Org. Chem. 2008, 4229–4239; q)
C. D. Turner, M. A. Ciufolini, ARKIVOC 2011, i, 410–428; r)
J. L. F. Silva, B. Olofsson, Nat. Prod. Rep. 2011, 28, 1722–1754;
s) M. S. Yusubov, V. V. Zhdankin, Curr. Org. Synth. 2012, 9,
3364; b) Y. Yamada, M. Okawara, Bull. Chem. Soc. Jpn. 1972,
45, 1860–1863; c) J. Malmgren, S. Santoro, N. Jalalian, F.
Himo, B. Olofsson, Chem. Eur. J. 2013, 19, 10334–10342.
[12] For a detailed mechanistic discussion of the ortho effect, see:
M. S. Yusubov, R. Y. Yusubova, V. N. Nemykin, V. V. Zhdan-
kin, J. Org. Chem. 2013, 78, 3767–3773.
Received: April 27, 2015
Published Online: July 2, 2015
4834
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 4831–4834