M. Salavati-Niasari et al. / Journal of Alloys and Compounds 476 (2009) 908–912
911
Fig. 4. (a) UV–vis absorption and (b) room temperature PL spectra of the ZnO nanotriangles.
It is known that the large specific surface nanoparticles are
important in catalysis. Therefore, the products were characterized
by X-ray photoelectron spectroscopy (XPS) to analyze the surface
of the products. Fig. 5 shows the XPS for the as-synthesized sam-
ples. The XPS gives the binding energies of O 1s, Zn 2p1/2 and Zn
2p3/2 for the as-synthesized ZnO to be 530.5, 1044.5 and 1044.6 eV
respectively. A full survey scan did not reveal other element peaks.
These results indicate that ZnO nanotriangles have formed. Com-
pared to those for other methods for synthesizing ZnO powders,
the conditions for the reaction are very moderate.
4. Conclusion
In summary, ZnO nanotriangles were synthesized via thermal
decomposition of [Zn(C2O4)]–oleylamine complex. This method
employed an inexpensive, reproducible process for the large-scale
synthesis of ZnO nanocrystals.
Acknowledgement
Authors are grateful to council of University of Kashan for pro-
viding financial support to undertake this work.
References
[1] S. Iijima, Nature 354 (1991) 56.
[2] X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421 (2003) 241.
[3] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947.
[4] H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Webber, R. Russo, P. Yang,
Science 292 (2001) 1897.
[5] J.J. Shiang, A.V. Kadavanich, R.K. Grubbs, A.P. Alivisatos, J. Phys. Chem. 99 (1995)
17417.
[6] S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. Elsayed, Science 272 (1996)
1924.
[7] Z.S. Wang, C.H. Huang, Y.Y. Huang, Y.J. Hou, P.H. Xie, B.W. Zhang, H.M. Cheng,
Chem. Mater. 13 (2001) 678.
[8] K. Westermark, H. Rensmo, T.A.C. Lees, J.G. Vos, H.T. Siegbahn, J. Phys. Chem. B
106 (2002) 10108.
[9] H.M. Lin, S.J. Tzeng, P.J. Hsiau, W.L. Tsai, Nanostruct. Mater. 10 (1998) 465.
[10] I. Rosso, C. Galletti, M. Bizzi, G. Saracco, V. Specchia, Ind. Eng. Chem. Res. 42
(2003) 1688.
[11] M. Singhal, V. Chhabra, P. Kang, D.O. Shah, Mater. Res. Bull. 32 (1997) 239.
[12] C. Feldmann, Adv. Fundam. Mater. 13 (2003) 101.
[13] M. Kitano, M. Shiojiri, Powder Technol. 93 (1997) 267.
[14] G.M. Hamminga, G. Mul, J.A. Moulijn, Chem. Eng. Sci. 59 (22–23) (2004) 5479.
[15] M.L. Curridal, R. Comparelli, P.D. Cozzli, G. Mascolo, A. Agostiano, Mater. Sci.
Eng. C23 (2003) 285.
[16] G.P. Fotou, S.E. Pratsinis, Chem. Eng. Commun. 151 (1996) 251.
[17] J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Mater. 14 (2002) 1216.
[18] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nano Lett. 3 (2003) 235.
[19] J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett. 2 (2002) 1287.
[20] J.-J. Wu, S.-C. Liu, J. Phys. Chem. B 106 (2002) 6546.
[21] N.S. Pesika, Z. Hu, K.J. Stebe, P.C. Searson, J. Phys. Chem. B 106 (2002) 6985.
[22] P.V. Radovanovic, N.S. Norberg, K.E. McNally, D.R. Gamelin, J. Am. Chem. Soc.
124 (2002) 15192.
[23] E.W. Seelig, B. Tang, A. Yamilov, H. Cao, R.P.H. Chang, Mater. Chem. Phys. 20
(2003) 257.
[24] P. Hoyer, H. Weller, J. Phys. Chem. 99 (1995) 14096.
[25] G.K. Paul, S. Bandyopadhyay, S.K. Sen, S. Sen, Mater. Chem. Phys. 79 (2003) 71.
Fig. 5. X-ray photoelectron spectroscopy (XPS) of the as-synthesized ZnO nanotri-
angles.