LETTER
A Concise Route to L-Azidoamino Acids
609
(17) McLaughlin, M.; Mohreb, R. M.; Rapoport, H. J. Org.
Chem. 2003, 68, 50.
(18) Broadrup, R. L.; Wang, B.; Malachowski, W. P.
Tetrahedron 2005, 61, 10277.
Acknowledgment
This work was funded by the BBSRC SCIBS initiative (Project
grant BBE0140891) to N.R.T.
(19) To a solution of alcohol 5 (269 mg, 0.87 mmol, 1.0 equiv)
in CH2Cl2 (5 mL) at 0 °C, was added Et3N (288 mL,
References and Notes
2.09 mmol, 2.4 equiv) followed by dropwise addition of
methylsulfonyl chloride (81 mL, 1.04 mmol, 1.2 equiv). The
ice-bath was removed and the solution was stirred at r.t. for
15 min. Sat. NaHCO3 (5 mL) was added and the layers were
separated. The organic layer was washed with brine (2 ×
5 mL) and the combined aqueous layer was back-extracted
with CH2Cl2 (2 × 10 mL). The combined organic layer was
dried over MgSO4, the solids filtered off and the solvent
removed in vacuo. The crude product was purified by
column chromatography (silica; PE–EtOAc, 7:3) to give a
colourless solid (312 mg, 0.81 mmol, 93%); mp 61–63 C
(CHCl3); [a]D28 –37.1 (c 0.11, CHCl3); IR: 3009, 1711, 1500,
1364, 1175 cm–1; 1H NMR (400 MHz, CDCl3): d = 1.39 (s,
9 H, tBu), 2.08 (m, 1 H, Hb1), 2.29 (m, 1 H, Hb2), 2.92 (s,
3 H, SO2CH3), 4.24 (m, 2 H, Hg), 4.43 (m, 1 H, Ha), 5.15 (s,
2 H, CH2Ph), 5.26 (bd, J = 7.0 Hz, 1 H, NH), 7.33 (m, 5 H,
Ar); 13C NMR (100 MHz, CDCl3): d = 28.2 [C(CH3)3], 31.8
(Cb), 37.1 (SO2CH3), 50.4 (Ca), 65.8 (Cg), 67.5 (CH2Ph),
80.3 [C(CH3)3], 128.4, 128.5, 128.7, 135.0 (Ar), 155.3 (t-
BuOCONHR), 177.5 (CO2Bn); MS (ESI+): m/z [M + Na]+
calcd for C17H25NNaO7S: 410.1244; found: 410.1225.
(20) To a solution of mesylate 6 (222 mg, 0.56 mmol, 1.0 equiv)
in anhydrous DMF (2 mL), was added NaN3 (54 mg,
0.84 mmol, 1.5 equiv) in one portion. The suspension was
stirred at 40 °C for 4 h, then the solvent was removed in
vacuo and the crude product was purified by column
chromatography (silica; PE–EtOAc, 4:1). The azide 7 was
obtained as a colourless oil (171 mg, 0.51 mmol, 92%);
[a]D28 +2.8 (c 0.71, CHCl3); IR: 3434, 2981, 2104, 1712,
1499, 1160 cm–1; 1H NMR (400 MHz, CDCl3): d = 1.41 (s,
9 H, tBu), 1.89 (m, 1 H, Hb1), 2.08 (m, 1 H, Hb2), 3.34 (t, J =
6.7 Hz, 2 H, Hg), 4.41 (m, 1 H, Ha), 5.13 (d, J = 12.3 Hz, 1 H,
CH2Ph), 5.18 (d, J = 12.3 Hz, 1 H, CH2Ph), 5.19 (br s, 1 H,
NH), 7.34 (m, 5 H, Ar); 13C NMR (100 MHz, CDCl3): d =
28.2 [C(CH3)3], 31.7 (Cb), 47.6 (Cg), 51.5 (Ca), 67.3
(1) (a) Ryu, Y.; Schultz, P. G. Nature Methods 2006, 3, 263.
(b) Wang, Q.; Parrish, A. R.; Wang, L. Chem. Biol. 2009, 16,
323.
(2) Connor, R. E.; Piatkov, K.; Varshavsky, A.; Tirrell, D. A.
ChemBioChem 2008, 9, 366.
(3) Van Hest, J. C. M.; Kiick, K. L.; Tirrell, D. A. J. Am. Chem.
Soc. 2000, 122, 1282.
(4) (a) Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R.
Proc. Natl Acad. Sci. U.S.A. 2002, 99, 19. (b) Link, A. J.;
Tirrell, D. A. J. Am. Chem. Soc. 2003, 125, 11164.
(5) Datta, D.; Wang, P.; Carrico, I. S.; Mayo, S. L.; Tirrell, D. A.
J. Am. Chem. Soc. 2002, 124, 5652.
(6) (a) Best, M. D. Biochemistry 2009, 48, 6571. (b) Baskin,
J. M.; Bertozzi, C. R. QSAR Comb. Sci. 2007, 26, 1211.
(7) (a) Oh, K.-I.; Lee, J.-H.; Joo, C.; Han, H.; Cho, M. J. Phys.
Chem. B 2008, 112, 10352. (b) Ye, S.; Huber, T.; Vogel, R.;
Sakmar, T. P. Nature Chem. Biol. 2009, 5, 397.
(8) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. (b) Kolb,
H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed.
2001, 40, 2004. (c) Meldal, M.; Tornoe, C. W. Chem. Rev.
2008, 108, 2952.
(9) (a) Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R.
J. Am. Chem. Soc. 2008, 130, 11486. (b) Baskin, J. M.;
Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.;
Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Proc. Natl
Acad. Sci. U.S.A. 2007, 104, 16793. (c) Sletten, E. M.;
Bertozzi, C. R. Org. Lett. 2008, 10, 3097.
(10) Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi,
C. R. ACS Chem. Biol. 2006, 1, 644.
(11) Link, A. J.; Vink, M. K. S.; Tirrell, D. A. J. Am. Chem. Soc.
2004, 126, 10598.
(12) (a) Panda, G.; Rao, N. V. Synlett 2004, 714. (b) Maier,
T. H. P. Nature Biotechnol. 2003, 21, 422. (c) Wie, L.;
Lubell, W. D. Can. J. Chem. 2001, 79, 94. (d) Davoli, P.;
Forni, A.; Moretti, I.; Prati, F. Tetrahedron: Asymmetry
1995, 6, 2011. (e) Arnold, L. D.; May, R. G.; Vederas, J. C.
J. Am. Chem. Soc. 1988, 110, 2237. (f) Mangold, J. B.;
Lavelle, J. M. Chem.-Biol. Interact. 1986, 60, 183.
(g) Owais, W. M.; Ronald, R. C.; Kleinhofs, A.; Nilan, R. A.
Mut. Res. Lett. 1986, 175, 121. (h) Golding, B. T.; Howes,
C. J. Chem. Res. 1984, 1.
(CH2Ph), 80.2 [C(CH3)3], 128.3, 128.5, 128.6, 135.1 (Ar),
155.2 (tBuOCONHR), 171.8 (CO2Bn); MS (ESI+): m/z [M
+ Na]+ calcd for C16H22N4NaO4: 357.1533; found: 357.1522.
(21) Felix, A. M. J. Org. Chem. 1974, 39, 1427.
(22) To a solution of protected amino acid 7 (33 mg, 0.1 mmol,
1 equiv) dissolved in anhydrous CH2Cl2 (2.5 mL) at –10 °C
under an N2 atmosphere, boron tribromide solution (1 M in
CH2Cl2, 0.5 mL, 0.5 mmol, 5 equiv) was added dropwise
over 5 min. The resulting solution was stirred for 1 h at
–10 °C and for 2 h at r.t. The reaction was quenched by
careful addition of H2O (2.5 mL), and then the layers were
separated. The organic phase was washed with H2O (3 ×
5 mL) and the combined aqueous layer was evaporated to
dryness. The crude product was re-dissolved in a minimum
amount of ethanol and the pure product 2 was obtained by
precipitation at 4 °C as a colourless crystalline solid (14 mg,
0.1 mmol, quantitative yield).
(13) Link, A. J.; Vink, M. K. S.; Tirrell, D. A. Nature Protoc.
2007, 2, 1884.
(14) Link, A. J.; Vink, M. K. S.; Tirrell, D. A. Nature Protoc.
2007, 2, 1879.
(15) Mangold, J. B.; Mischke, M. R.; Lavelle, J. M. Mutat. Res.
1989, 216, 27.
(16) Oppolzer, W.; Moretti, R.; Zhou, C. Helv. Chim. Acta 1994,
77, 2363.
Synlett 2010, No. 4, 607–609 © Thieme Stuttgart · New York