0.90 NA microscope objective. Raman signals were collected
and focused into a 400 mm optical fibre (Ocean Optics, Inc.)
which delivered the signals to a single-stage monochromator
(DoongWo, Inc.). Spectrum acquisition was started and an
integration time is 40 s for all SERS measurements.
Experimental
Synthesis of ‘‘trimethyl lock’’ peptide substrate
To a stirred suspension of acetylated ‘‘trimethyl lock’’ com-
pound (15.6 mg, 0.06 mmol) in 200 mL anhydrous dichloro-
methane, thionyl chloride (43 mL, 0.59 mmol) was added
dropwise at 0 1C (ice bath). After addition, the reaction
mixture was allowed to warm to room temperature and stirred
for 18 h. The solvent was evaporated in vacuum to give the oil
product without purification. Then, the purified thermolysin
cleavable peptide (SH–Ph–CH2–Gly–Gly–Gly–Phe–Gly–Gly–
Lys(NH2)–CO–NH2) (8.6 mg, 0.012 mmol) and triethylamine
(13 mL, 0.093 mmol) in 150 mL anhydrous DMF were added
into the oil product under nitrogen atmosphere and the
reaction mixture was stirred for 12 h. After removing DMF,
the crude product was purified by reversed-phase semi-
preparative HPLC with 20%–80% water–acetonitrile gradient
system containing 0.1% TFA to give the final product 7.4 mg
(yield 53.1%). ESI-MS Found [M + H+]: 1220.63, [M +
Na+]: 1242.85; calculated 1219.6.
References
1 (a) D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad and
R. Margalit R. Langer, Nat. Nanotechnol., 2007, 2, 751;
(b) A. C. Templeton, M. P. Wuelfing and R. W. Murray,
Acc. Chem. Res., 2000, 33, 27; (c) Y. C. Cao, R. Jin and
C. A. Mirkin, Science, 2002, 297, 1536; (d) E. Katz and
I. Willner, Angew. Chem., Int. Ed., 2004, 43, 6042;
(e) X. H. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed,
Nanomedicine, 2007, 2, 681; (f) H. W. Gu, P. L. Ho, E. Tong,
L. Wang and B. Xu, Nano Lett., 2003, 3, 1261.
2 (a) C. M. Niemeyer, Angew. Chem., Int. Ed., 2001, 40, 4128;
(b) X. M. Qian, X. Zhou and S. M. Nie, J. Am. Chem. Soc.,
2008, 130, 14934; (c) Y. Lu, J. Liu and J. Liu, Acc. Chem. Res.,
2007, 40, 315; (d) J. W. Liu, Z. H. Cao and Y. Lu, Chem. Rev.,
2009, 109, 1948; (e) X. Xue, F. Wang and X. G. Liu, J. Am. Chem.
Soc., 2008, 130, 3244; (f) S. P. Song, Z. Q. Liang, J. Zhang,
L. H. Wang, G. X. Li and C. H. Fan, Angew. Chem., Int. Ed.,
2009, 48, 8670; (g) C. D. Medley, J. E. Smith, Z. W. Tang,
Y. R. Wu, S. Bamrungsap and W. H. Tan, Anal. Chem., 2008,
80, 1067.
Colorimetric assay for enzyme hydrolysis of ‘‘trimethyl lock’’
substrate
3 C. L. Schofield, R. A. Field and D. A. Russell, Anal. Chem., 2007,
79, 1356.
4 (a) S. Chah, M. R. Hammond and R. N. Zare, Chem. Biol., 2005,
To the solution of 0.4 mL of monodispersed dipotassium bis
(p-sulfonatophenyl) phenylphosphane stabilized AuNPs
(10 nm) (See the ESIw),9 the peptide substrate and esterase
in 0.05 mL of PBS buffer (pH 7.4) were added to afford their
final concentrations of 8.5 mM and 1.25 mg mLÀ1, respectively.
The mixture was incubated at 37 1C for enzyme hydrolysis 2 h.
Gold nanoparticles were induced to highly aggregated clusters
which displayed purple-blue color and surface plasmon reso-
nance shifts from 520 nm to 600 nm. Then, the aggregated
gold nanoparticles were further incubated with thermolysin
(60 mg mlÀ1) for 4 h, the aggregated gold clusters were driven
disassembly, which displayed red color and surface plasmon
resonance shifts back from 600 nm to 520 nm again. This self-
assembly and disassembly process were monitored by naked
eyes and UV-Vis spectrotrophometer.
12, 323; (b) J. M. de la Fuente and S. Penades, Biochim. Biophys.
´
Acta, Gen. Subj., 2006, 1760, 636; (c) Z. Wang, R. Levy,
D. G. Fernig and M. Brust, J. Am. Chem. Soc., 2006, 128, 2214;
(d) C. Guarise, L. Pasquato, V. De. Filippis and P. Scrimin, Proc.
Natl. Acad. Sci. U. S. A., 2006, 103, 3978; (e) A. Laromaine,
L. Koh, M. Murugesan, R. V. Ulijn and M. M. Stevens, J. Am.
Chem. Soc., 2007, 129, 4156; (f) Y. D. Choi, N. H. Ho and
C. H. Tung, Angew. Chem., Int. Ed., 2007, 46, 707; (g) J. Oishi,
Y. Asami, T. Mori, J. H. Kang, M. Tanabe, T. Niidome and
Y. Katayama, ChemBioChem, 2007, 8, 875; (h) R. R. Liu, R. Liew,
J. Zhou and B. G. Xing, Angew. Chem., Int. Ed., 2007, 46, 8799;
(i) T. T. Jiang, R. R. Liu, X. F. Huang, H. J. Feng, W. L. Teo and
B. G. Xing, Chem. Commun., 2009, 1972; (j) M. Wang, X. G. Gu,
G. X. Zhang, D. Q. Zhang and D. B. Zhu, Langmuir, 2009, 25,
2504; (k) Y. L. Wang, D. Li, W. Ren, Z. J. Liu, S. J. Dong and
E. K. Wang, Chem. Commun., 2008, 2520.
5 (a) Y. H. Jung, K. B. Lee, Y. G. Kim and I. S. Choi, Angew. Chem.,
Int. Ed., 2006, 45, 5960; (b) Y. Chen and C. D. Mao, Small, 2008, 4,
2191; (c) J. Sharma, R. Chhabra, H. Yan and Y. Liu, Chem.
Commun., 2007, 477; (d) C. A. Mirkin, R. L. Letsinger,
R. C. Mucic and J. J. Storhoff, Nature, 1996, 382, 607;
(e) H. C. Huang, P. Koria, S. M. Parker, L. Selby, Z. Megeed
and K. Rege, Langmuir, 2008, 24, 14139; (f) S. Si, M. Raula,
T. K. Paira and T. K. Mandal, ChemPhysChem, 2008, 9, 1578;
(g) C. Guarise, L. Pasquato and P. Scrimin, Langmuir, 2005, 21,
5537; (h) H. Otsuka, Y. Akiyama, Y. Nagasaki and K. Kataoka,
J. Am. Chem. Soc., 2001, 123, 8226; (i) P. Hazarika, B. Ceyhan and
C. M. Niemeyer, Angew. Chem., Int. Ed., 2004, 43, 6469;
(j) I. S. Lim, U. Chandrachud, L. Y. Wang, S. Gal and
C. J. Zhong, Anal. Chem., 2008, 80, 6038; (k) A. G. Kanaras,
Z. X. Wang, A. D. Bates, R. Cosstick and M. Brust, Angew.
Chem., Int. Ed., 2003, 42, 191; (l) T. Peng, C. Dohno and
K. Nakatani, ChemBioChem, 2007, 8, 483.
6 (a) B. F. Cravatt and E. Sorensen, Curr. Opin. Chem. Biol., 2000, 4,
663; (b) F. Lecaille, J. Kaleta and D. Bromme, Chem. Rev., 2002,
102, 4459.
7 S. Darvesh, D. A. Hopkins and C. Geula, Nat. Rev. Neurosci.,
2003, 4, 131.
8 (a) M. G. Nicolaou, C. S. Yuan and R. T. Borchardt, J. Org.
Chem., 1996, 61, 8636; (b) R. B. Greenwald, Y. H. Choe,
C. D. Conover, K. Shum, D. Wu and M. Royzen, J. Med. Chem.,
2000, 43, 475; (c) K. Achilles, Arch. Pharm., 2001, 334, 209;
Dynamic light scattering (DLS) measurements for AuNPs
Dynamic light scattering (DLS) measurements were per-
formed using a 90 Plus particle size analyzer (Brookhaven
Instruments Corporation). The DLS instrument was operated
at 25 1C, 90 degree detector angle with an incident laser
wavelength of 660 nm. Size and size distribution of gold
nanoparticles were determined in solution. All the samples
were measured for 3 min, and the reported values are the
average of five repeated consecutive measurements.
Surface enhanced Raman Scattering (SERS) measurements
Dipotassium bis (p-sulfonatophenyl) phenylphosphane stabi-
lized gold nanoparticles solution dropped on glass slides
(approximately 10 mL) was used for SERS measurement.
The spectra were excited using 3.5 mW of power at He–Ne
633 nm laser. The laser beam was then focused onto
the sample via a dichroic mirror and through an Olympus
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
New J. Chem., 2010, 34, 594–598 | 597