2952
F.S. Raad et al. / Tetrahedron 66 (2010) 2944–2952
16 ppm (corresponding to H2Fꢀ) upon titrating the sensors with the
fluoride anion.18 Finally, the low acidity of sulfonamide (pKa¼16 in
DMSO)36,37 as compared to acetic acid (pKa¼12 in DMSO) and
benzoic acid (pKa¼11 in DMSO) makes deprotonation of the sensors
by the acetate or the benzoate anions unfeasible even if 10 M
equivalents of the anion were present.
chemical shifts of the aromatic protons were recorded. The col-
lected data was analyzed using a non-linear least square regression
program to fit the data to a theoretical model of a 1:1 for sensor 1
and 1:2 for sensor 2 (see Supplementary data).
Acknowledgements
4. Experimental
This work was supported by the University Research Board
(URB) of the American University of Beirut, American University of
Sharjah (grant # FRG08-01), the Royal Society of Chemistry, and by
the Petroleum Research Foundation of the American Chemical So-
ciety (grant #: 47343-B10). The authors are grateful for this
support.
4.1. General
Chemicals and solvents were purchased from Acros. Standard
grade silica gel (60 Å, 32–63 mm) and silica gel plates (200 mm) were
purchased from Sorbent Technologies. Reactions that required an-
hydrous conditions were carried out under argon in oven-dried
glassware. A Bruker spectrometer was used to record the NMR
spectra. CDCl3 and DMSO-d6 were the solvents for NMR measure-
ments and chemical shifts relative to TMS at 0.00 ppm are reported
Supplementary data
Absorption titration spectra of the sensors, calculations of
binding constants, and the curve fit of NMR data are provided in the
Supplementary data. Supplementary data associated with this ar-
in parts per million (ppm) on the
d scale. Elemental analyses were
performed at Atlantic Microlab Inc., Norcross, GA.
4.1.1. Sensor 1. 2,7-Di-tert-butyldiketopyrene (5)32 (230 mg,
0.67 mmol)
and
1,2-bis(p-methylphenylsulfonamido)-4,5-di-
References and notes
aminobenzene (10)35 (300 mg, 0.67 mmol) were refluxed in
a mixture of (1:1) ethanol/acetic acid (60 mL) for 24 h. The reaction
mixture was filtered and washed with cold ethanol to yield a fluo-
rescent green solid of 1 (385 mg, 77%), mp >300 ꢂC. 1H NMR
1. Kitamura, N.; Inoue, T.; Tazuke, S. Chem. Phys. Lett. 1982, 89, 329–332.
2. Tao, Y.; Wang, Q.; Yang, C.; Wang, Q.; Zhang, Z.; Zou, T.; Qin, J.; Ma, D. Angew.
Chem., Int. Ed. 2008, 47, 8104–8107.
3. Cuisdo, J.; Deniz, E.; Raymo, F. M. Eur. J. Org. Chem. 2009, 2031–2045.
4. Aldakov, D.; Palacios, M. A.; Anzenbacher, P., Jr. Chem. Mater. 2005,17, 5238–5241.
5. Lee, K.-S.; Kim, H.-J.; Kim, G.-H.; Shin, I.; Hong, J.-I. Org. Lett. 2008, 10, 49–51.
6. Gale, P. A. Coord. Chem. Rev. 2001, 213, 79–128.
7. Sessler, J. L.; Davis, J. M. Acc. Chem. Res. 2001, 34, 989–997.
8. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C.
P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566.
9. Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–516.
10. Amendola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res.
2006, 39, 343–353.
(300 MHz, DMSO-d6):
d
9.40 (2H, d, J¼1.8 Hz), 8.46 (2H, d,
J¼2.1 Hz), 8.16 (2H, s), 7.94 (2H, s), 7.79 (4H, d, J¼8.4 Hz), 7.39 (4H, d,
J¼8.4 Hz), 2.35 (6H, s), 1.60 (18H, s). 13C NMR (75 MHz, CDCl3):
d
149.8, 144.6, 144.3, 140.4, 135.0, 132.2, 131.1, 129.9, 128.5, 127.7,
126.2, 124.3, 124.2, 121.7, 35.52, 21.61. Anal. Calcd for C44H42N4O4S2:
C, 70.00; H, 5.61; N, 7.42. Found: C, 69.90; H, 5.50; N, 7.30.
4.1.2. Sensor 2. 2,7-Di-tert-butyltetraketopyrene (6)32 (150 mg,
0.40 mmol) and 1,2-bis(p-methylphenylsulfonamido)-4,5-dia-
minobenzene (10)35 (360 mg, 0.81 mmol) were refluxed in a mixture
of(1:1)ethanol/acetic acid(60 mL)underargonfor24 h. Thereaction
mixture was filtered and washed with cold ethanol to yield a yellow
solid, whichwastrituratedusinghot tolueneviaSoxhletextractionto
yield 2 (330 mg, 70%), mp >300 ꢂC. 1H NMR (300 MHz, DMSO-d6):
11. Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem.
Rev. 2006, 250, 3094–3117.
12. Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc.
1999, 121, 10438–10439.
13. Kleerekoper, M. Endocrinol. Metab. Clin. North Am. 1998, 27, 441–452.
14. Davis, F.; Collyer, S. D.; Higson, S. P. J. Top. Curr. Chem. 2005, 255, 97–124.
15. Chen, C.-L.; Chen, Y.-H.; Chen, C.-Y.; Sun, S.-S. Org. Lett. 2006, 8, 5053–5056.
16. Morozumi, M.; Hossain, R. Z.; Yamakawa, K.-i.; Hokama, S.; Nishijima, S.;
Oshiro, Y.; Uchida, A.; Sugaya, K.; Ogawa, Y. Urol. Res. 2006, 34, 168–172.
17. Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.; Glynn, M. Org. Biomol. Chem. 2005,
3, 48–56.
18. Gunnlaugsson, T.; Kruger, P. E.; Lee, T. C.; Parkesh, R.; Pfeffer, F. M.; Hussey, G. M.
Tetrahedron Lett. 2003, 44, 6575–6578.
19. Bernard, V. Molecular Fluorescence: Principles and Applications; Wiley-VCH:
Weinheim, Germany, 2001.
20. Wen, Z.-C.; Jiang, Y.-B. Tetrahedron 2004, 60, 11109–11115.
21. Atkinson, P.; Bretonniere, Y.; Parker, D. Chem. Commun. 2004, 438–439.
22. Li, Z.; Chen, Y. H.; Jiang, Y. B. Sci. China, Ser. B: Chem. 2009, 52, 786–792.
23. de Silva, A. P.; Nimal, H. Q.; Gunaratne, N.; Gunnlaugsson, T.; McCoy, C. P.; Max-
well, P. R. S.; Rademacher, J. T.; Rice, T. E. Pure Appl. Chem. 1996, 68, 1443–1448.
24. Gunnlaugsson, T.; Ali, H. D. P.; Glynn, M.; Kruger, P. E.; Hussey, G. M.; Pfeffer, F.
M.; dos Santos, C. M. G.; Tierney, J. J. Fluoresc. 2005, 15, 287–299.
25. Chung, S.-Y.; Nam, S.-W.; Lim, J.; Park, S.; Yoon, J. Chem. Commun. 2009, 2866–
2868.
26. Wei, L.-H.; He, Y.-B.; Wu, J.-L.; Wu, X.-J.; Meng, L.-Z.; Yang, X. Supramol. Chem.
2004, 16, 561–567.
27. Kato, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. Tetrahedron Lett. 2001, 42,
5053–5056.
28. Anzenbacher, P., Jr.; Palacios, M. A.; Jursikova, K.; Marquez, M. Org. Lett. 2005, 7,
5027–5030.
29. Jose, D. A.; Kumar, D. K.; Ganguly, B.; Das, A. Org. Lett. 2004, 6, 3445–3448.
30. Ghosh, T.; Maiya, B. G.; Wong, M. W. J. Phys. Chem. A 2004, 108, 11249–11259.
31. Jradi, F. M.; Al-Sayah, M. H.; Kaafarani, B. R. Tetrahedron Lett. 2008, 49, 238–242.
32. Hu, J.; Zhang, D.; Harris, F. W. J. Org. Chem. 2005, 70, 707–708.
33. Elderfield, R. C.; Meyer, V. B. J. Am. Chem. Soc. 1954, 76, 1887–1891.
34. Cheeseman, G. W. H. J. Chem. Soc. 1962, 1170–1176.
35. Kleineweischede, A.; Mattay, J. Eur. J. Org. Chem. 2006, 947–957.
36. Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456–463.
37. Fu, Y.; Liu, L.; Li, R.-Q.; Liu, R.; Guo, Q.-X. J. Am. Chem. Soc. 2004, 126, 814–822.
d
9.51 (4H, s), 7.93 (4H, s), 7.78 (4H, d, J¼6.9 Hz), 7.38 (4H, d, J¼7.2 Hz),
2.35 (12H, s), 1.60 (18H, s). 13C NMR (75 MHz, DMSO-d6):
d
150.6,
143.9, 141.7, 139.3, 136.6, 133.5, 129.9, 128.7, 126.9, 124.5, 123.5, 118.7,
35.3, 31.4, 20.9. Anal. Calcd for C64H58N8O8S4: C, 64.30; H, 4.89; N,
9.37. Found: C, 64.06; H, 4.91; N, 9.12.
4.1.3. Spectroscopic titration. A solution of the sensor (5 mM, 2 mL)
in CH2Cl2/CH3CN (1:1) placed into a 1ꢁ1 cm cuvette was titrated
with a solution of the anion (1.0 mM or 2.0 mM, CH2Cl2/CH3CN
(1:1)) that contained the sensor (5 mM). Aliquot amounts of the
anion solution were added to the cuvette via a syringe until a total
of six or more equivalents of the anion had been added (the number
of additions was around 20 with an increase in the amount of anion
solution added). The UV–vis spectrum and emission spectrum
(lex¼350 nm) were scanned after each addition.
4.1.4. 1H NMR titration. A solution of the sensor (1 mM, 600
mL) in
CDCl3 (1) or DMSO-d6 (2) placed in an NMR tube was titrated with
a solution of the anion (10 mM). Aliquot amounts of the anion so-
lution were added to the NMR tube via a syringe until a total of ten
equivalents of the anion were added (the number of additions was
around 17 with an increase in the amount of anion solution added).
A
1H NMR spectrum was recorded after each addition and the