Organic Letters
Letter
a
formation may also be useful for the simplified preparation of 1,3-
azole-containing biologically active compounds.
Scheme 2. Methylation of 1,3-Azoles
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Synthetic methods, analytical methods, condition opim-
ization, and full characterization of materials (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
a
Isolated yield of desired regioisomer.15
Notes
the alkylation is dictated by steric effects rather than by
electronics. In addition, the presence and position of a nitrogen
atom in the 6-membered ring does not affect the regioselectivity
of 1,3-azole methylation. However, a C7 substituent adjacent to
the site of alkylation is required to differentiate the steric
environment of the two reactive nitrogen atoms in the 1,3-azole
ring.
Encouraged by the excellent selectivity of various bicyclic 1,3-
azoles, we set out to extend this methodology to the alkylation of
unsymmetrical imidazoles. To our delight, the expected N1
substituted imidazole was the major product under standard
reaction conditions (Table 4). Bromide and cyano groups were
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank Paul Krolikowski (Amgen) for 2D NMR (HSQC,
HMBC, ROSEY) structure confirmations.
■
REFERENCES
(1) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193−205.
(2) Hoffmann, R. W. Synthesis 2006, 20, 3531−3541.
■
(3) (a) Pappo, D.; Shimony, S.; Kashman, Y. J. Org. Chem. 2005, 70,
199−206. (b) Rivkin, A.; Ahearn, S. P.; Chichetti, S. M.; Hamblett, C. L.
Y.; Garcia, Y.; Martinez, M.; Hubbs, J. L.; Reutershan, M. H.; Daniels, M.
H.; Siliphaivanh, P.; Otte, K. M.; Li, C.; Rosenau, A.; Surdi, L. M.; Jung,
J.; Hughes, B. L.; Crispino, J. L.; Nikov, G. N.; Middleton, R. E.;
Moxham, C. M.; Szewczak, A. A.; Shah, S.; Moy, L. Y.; Kenific, C. M.;
Tanga, F.; Cruz, J. C.; Andrade, P.; Angagaw, M. H.; Shomer, N. H.;
Miller, T.; Munoz, B.; Shearman, M. S. Bioorg. Med. Chem. Lett. 2010, 20,
2279−2282. (c) Williams, T. M.; Bergman, J. M.; Brashear, K.; Breslin,
M. J.; Dinsmore, C. J.; Hutchinson, J. H.; MacTough, S. C.; Stump, C.
A.; Wei, D. D.; Zartman, C. B.; Bogusky, M. J.; Culberson, J. C.; Buser-
Doepner, C.; Davide, J.; Greenberg, I. B.; Hamilton, K. A.; Koblan, K. S.;
Kohl, N. E.; Liu, D.; Lobell, R. B.; Mosser, S. D.; O’Neill, T. J.; Rands, E.;
Schaber, M. D.; Wilson, F.; Senderak, E.; Motzel, S. L.; Gibbs, J. B.;
Graham, S. L.; Heimbrook, D. C.; Hartman, G. D.; Oliff, A. I.; Huff, J. R.
J. Med. Chem. 1999, 42, 3779−3784.
Table 4. Alkylation of Imidazoles
alkylating
reagent
(equiv)
b
temp time yield
entry
8
R1
base
(°C)
(h)
(%)
1
2
3
4
5
6
a
b
c
d
e
f
Ph
MeI (1.1)
MeMgCl
MeMgCl
MeMgCl
MeMgCl
TMPMgCl
TMPMgCl
MeMgCl
25
25
48
48
20
20
20
20
2
76
87
64
69
69
74
42
t-Bu MeI (1.1)
Me
Cl
MeI (1.5)
MeI (1.5)
MeI (1.5)
70
70
(4) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley-
Blackwell: New York, 2010; pp 416−538.
Br
70
(5) For purine alkylation, see: (a) Singh, D.; Wani, M. J.; Kumar, A. J.
Org. Chem. 1999, 64, 4665−4668. (b) Pappo, D.; Kashman, Y.
CN MeI (1.5)
70
a
7
g
Ph
CH2
CHCH2Br
(1.5)
120
Tetrahedron 2003, 59, 6493−6501. (c) Jahne, G.; Kroha, H.; Muller, A.;
̈
̈
Helsberg, M.; Winkler, I.; Gross, G.; Scholl, T. Angew. Chem. 1994, 106,
603−605; Angew. Chem., Int. Ed. Engl. 1994, 33, 562−563.
(d) Hakimelahi, G. H.; Ly, T. W.; Moosavi-Movahedi, A. A.; Jain, M.
L.; Zakerinia, M.; Davari, H.; Mei, H. C.; Sambaiah, T.; Moshfegh, A. A.;
Hakimelahi, S. J. Med. Chem. 2001, 44, 3710−3720. (e) Lebraud, H.;
Cano, C.; Carbain, B.; Hardcastle, I. R.; Harrington, R. W.; Griffin, R. J.;
Golding, B. T. Org. Biomol. Chem. 2013, 11, 1874−1878. (f) Kohda, K.;
Baba, K.; Kawazoe, Y. Tetrahedron Lett. 1987, 28, 6285−6288.
a
8
h
Ph
CHCCH2Br MeMgCl
70
10
35
(1.1)
a
b
Microwave irradiation. Isolated yield of desired regioisomer.15
tolerated using TMPMgCl as the base and afforded a good yield
of the N1 regioisomeric products (entries 5 and 6). Electrophiles
other than methyl iodide showed poor reactivity at ambient
temperature (Table 4, entries 7 and 8).15,16
́ ̌ ́
(g) Kotek, V.; Chudíkova, N.; Tobrman, T.; Dvorak, D. Org. Lett.
2010, 12, 5724−5727. (h) Van Den Berge, E.; Robiette, R. J. Org. Chem.
2013, 78, 12220−12223.
(6) For imidazole alkylation, see: (a) Roumen, L.; Peeters, J. W.;
Emmen, J. M. A.; Beugels, I. P. E.; Custers, E. M. G.; de Gooyer, M.;
Plate, R.; Pieterse, K.; Hilbers, P. A. J.; Smits, J. F. M.; Vekemans, J. A. J.;
Leysen, D.; Ottenheijm, H. C. J.; Janssen, H. M.; Hermans, J. J. R. J. Med.
Chem. 2010, 53, 1712−1725. (b) Kumar, S.; Jaller, D.; Patel, B.;
LaLonde, J. M.; DuHadaway, J. B.; Malachowski, W. P.; Prendergast, G.
C.; Muller, A. J. J. Med. Chem. 2008, 51, 4968−4977.
In conclusion, the direct, protecting-group free alkylation of
the more sterically encumbered position of a wide range of 1,3-
azoles has been demonstrated. High yields and regioselectivity
were achieved using commercially available alkylmagnesium
reagents or easily prepared TMPMgCl. It was observed that
selectivity was not affected by the electronic nature of the
substituents on the purine; however, the yields were influenced
by the electronic character of the substituents. This trans-
(7) (a) Schenkel, L.; Identification of a selective TRPA1 antagonist that
demonstrates potent in vivo inhibition. Abstracts of Papers, 247th ACS
C
Org. Lett. XXXX, XXX, XXX−XXX