Table 1 ‘‘Click’’ reaction catalyzed by xerogela
catalysts to asymmetric reaction and atom-transfer radical
polymerization are ongoing.
This work was supported by grants from the National
Natural Science Foundation of China (20502024).
Notes and references
Entry Catalyst Azide Alkyne Solvent
Time/h Yield (%)b
1 F. Fages, Angew. Chem., Int. Ed., 2006, 45, 1680–1682.
2 (a) S. A. Joshi and N. D. Kulkarni, Chem. Commun., 2009,
2341–2343; (b) T. Tu, X. Bao, W. Assenmacher, H. Peterlik,
1
2
3
4
5
6
7
8
Cu(I)ꢀ3
Cu(I)ꢀ3
Cu(I)ꢀ3
Cu(I)ꢀ3
Cu(I)ꢀ1
Cu(I)ꢀ2
Cu(I)ꢀ4
Cu(I)ꢀ3
Cu(I)ꢀ3
Cu(I)ꢀ3
Cu(I)ꢀ3
Cu(I)ꢀ3
Cu(I)ꢀ3
7
7
7
7
7
7
7
7
7
7
7
7
7
8a
8a
8a
8a
8a
8a
8a
8b
8c
8d
8e
8f
CH2Cl2
CH3CN
18
18
64
59
56
100 (97)
78
73
CH3CN–H2Oc 18
J. Daniels and K. H. Dotz, Chem.–Eur. J., 2009, 15, 1853–1861;
¨
(c) A. Y.-Y. Tam, K. M.-C. Wong, N. Zhu, G. Wang and
V. W.-W. Yam, Langmuir, 2009, 25, 8685–8695; (d) J. Liu,
P. He, J. Yan, X. Fang, J. Peng, K. Liu and Y. Fang, Adv. Mater.,
2008, 20, 2508–2511; (e) T. Tu, W. Assenmacher, H. Peterlik,
H2O
H2O
H2O
H2O
H2O
H2O
H2O
H2O
H2O
H2O
18
18
18
18
18
18
18
18
18
8
97
R. Weisbarth, M. Nieger and K. H. Dotz, Angew. Chem., Int. Ed.,
¨
95 (92)
100 (97)
100 (99)
12
8
97
2007, 46, 6368–6371; (f) M. Shirakawa, N. Fujita, T. Tani,
K. Kaneko and S. Shinkai, Chem. Commun., 2005, 4149–4151;
(g) M. Shirakawa, N. Fujita, T. Tani, K. Kaneko, M. Ojima,
A. Fujii, M. Ozaki and S. Shinkai, Chem.–Eur. J., 2007, 13,
4155–4162; (h) Q. Liu, Y. Wang, W. Li and L. Wu, Langmuir,
2007, 23, 8217–8223; (i) M. Enomoto, A. Kishimura and T. Aida,
J. Am. Chem. Soc., 2001, 123, 5608–5609; (j) A. Kishimura,
T. Yamashita and T. Aida, J. Am. Chem. Soc., 2005, 127,
179–183.
9
10
11
12
13
8a
a
Reaction condition: alkyl azide (1.0 mmol), phenylacetylene
b
(1.2 mmol), xerogel (0.01 mmol), solvent (2.0 mL), RT, air. GC
c
yield (isolated yield in parenthesis) v/v, 1 : 1.
3 (a) B. Xing, M.-F. Choi and B. Xu, Chem. Commun., 2002,
362–363; (b) B. Xing, M.-F. Choi and B. Xu, Chem.–Eur.
J., 2002, 8, 5028–5032; (c) Y.-R. Liu, L. He, J. Zhang, X.
Wang and C.-Y. Su, Chem. Mater., 2009, 21, 557–563;
(d) J. B. Beck and S. J. Rowan, J. Am. Chem. Soc., 2003, 125,
13922–13923.
4 (a) A. Gasnier, G. Royal and P. Terech, Langmuir, 2009, 25,
8751–8762; (b) W. L. Leong, S. K. Batabyal, S. Kasapis and
J. J. Vittal, Chem.–Eur. J., 2008, 14, 8822–8829; (c) W. L. Leong,
A. Y.-Y. Tam, S. K. Batabyal, L. W. Koh, S. Kasapis,
V. W.-W. Yam and J. J. Vittal, Chem. Commun., 2008, 3628–3630.
5 K. Kuroiwa, T. Shibata, A. Takada, N. Nemoto and N. Kimizuka,
J. Am. Chem. Soc., 2004, 126, 2016–2021.
6 (a) H.-J. Kim, W.-C. Zin and M. Lee, J. Am. Chem. Soc., 2004,
126, 7009–7014; (b) H.-J. Kim, J.-H. Lee and M. Lee, Angew.
Chem., Int. Ed., 2005, 44, 5810–5814.
7 C. Kaes, A. Katz and M. W. Hosseini, Chem. Rev., 2000, 100,
3553–3590.
8 (a) C. Piguet, G. Bernardinelli and G. Hopfgartner, Chem. Rev.,
1997, 97, 2005–2062; (b) M. Albrecht, Chem. Rev., 2001, 101,
3457–3497.
room temperature in air. Using water as the solvent gave the
best result. Screening the catalysts gave the excellent result for
xerogel Cu(I)ꢀ3. 1 mol% xerogel Cu(I)ꢀ3 effectively promoted
the reaction in water at room temperature in air, giving
quantitative conversion (entry 4). The long lipophilic carbon
chain in xerogel Cu(I)ꢀ3 could provide an organic micro-
environment in the aqueous phase, thus facilitating the
diffusion of the substrates from surrounding media to the
catalytic sites in the gel fibers.18 The xerogel Cu(I)ꢀ3 was
recovered by filtration and reused in the next three cycles of
the reaction of 7 with 8a without appreciable loss of reactivity,
giving 9a in 100%, 100%, and 99.5% yield, respectively. No
copper(I) ion was detected in aqueous phase by ICP-MS
analysis, indicating the heterogenous catalysis. We also
examined the reaction of various alkynes with benzyl azide
catalyzed by xerogel Cu(I)ꢀ3. Aryl alkynes gave excellent
results (entry 8–10), while alkyl alkynes gave inferior outcomes
(entry 11–12). Using Cu(I)ꢀ(2,20-bipyridine)2 as catalyst was
accompanied by a rapid color change from red to green,
suggesting poor support of Cu(I) by bipyridine. However, no
color change was observed for xerogel Cu(I)ꢀ3 and catalytic
activity remained almost unchanged on staying in air for at
least one year, demonstrating significant stabilization of Cu(I)
in the complex, which was further confirmed by cyclic
voltammetry (CV) experiments. The redox potential of
9 J. Bunzen, T. Bruhn, G. Bringmann and A. Lutzen, J. Am. Chem.
¨
Soc., 2009, 131, 3621–3630.
10 A. Lutzen, M. Hapke, J. Griep-Raming, D. Haase and W. Saak,
¨
Angew. Chem., Int. Ed., 2002, 41, 2086–2089.
11 L.-l. Tian, C. Wang, S. Dawn, M. D. Smith, J. A. Krause and
L. S. Shimizu, J. Am. Chem. Soc., 2009, 131, 17620–17629.
12 (a) M. Ziegler and A. von Zelewsky, Coord. Chem. Rev., 1998, 177,
257–300; (b) U. Knof and A. von Zelewsky, Angew. Chem., Int.
Ed., 1999, 38, 302–322.
13 ESI-MS spectra of CH3CN–CH2Cl2 (v/v, 1 : 1) solution
(5 ꢃ 10ꢂ6 M) of the complex Cu(I)ꢀ1 did not provide any valuable
information.
14 A. Westcott, C. J. Sumby, R. D. Walshaw and M. J. Hardie,
New J. Chem., 2009, 33, 902–912.
15 R. M. Williams, L. D. Cola, F. Hartl, J.-J. Lagref, J.-M. Planeix,
A. D. Cian and M. W. Hosseini, Coord. Chem. Rev., 2002, 230,
253–261.
16 S.-i. Kawano, N. Fujita and S. Shinkai, J. Am. Chem. Soc., 2004,
126, 8592–8593.
17 J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36,
1249–1262.
18 N. Shapiro and A. Vigalok, Angew. Chem., Int. Ed., 2008, 47,
2849–2852.
Cu(I)/Cu(II) in
a
CH3CN–CH2Cl2 solution of Cu(I)ꢀ3
showed a dramatic increase of 1.20 V compared to that of
Cu(I)ꢀ(2,20-bipyridine)2.
In conclusion, we described
a novel class of metal
coordination polymer gels, which were not only responsive
to various stimuli such as heat, sound and redox, but also well
suited as self-supported stable supramolecular catalysts for
‘‘click’’ reaction. Further applications of the supramolecular
ꢁc
This journal is The Royal Society of Chemistry 2010
3534 | Chem. Commun., 2010, 46, 3532–3534