MnI- and ReI(CO)3 Complexes of Imidazol-Based Phosphane Ligands
a laboratory shaker (Perkin–Elmer) for 72 h to allow saturation of
both phases. Each compound (1 mg) was mixed in aqueous and
organic phase (1 mL) for 10 min by using a laboratory vortexer.
The resulting emulsion was centrifuged (3000 g, 5 min) to separate
the phases. The concentrations of each complex in the aqueous and
organic phases were determined by using UV/Vis spectroscopy at
260 nm; logDpH was defined as the logarithm of the ratio of the
concentrations of the complex in the organic and aqueous phase
(logD = log{[complex(org)]/[complex](aq)}); the value reported is the
mean of three separate determinations.
Prof. Dr. Nils Metzler-Nolte and P. C. K. thanks Prof. Dr. Wolf-
gang Kläui for generous access to all facilities of the institutes.
[1] B. E. Mann, R. Motterlini, Chem. Commun. 2007, 4197.
[2] L. Wu, R. Wang, Pharmacol. Rev. 2005, 57, 585.
[3] S. W. Ryter, J. Alam, A. M. K. Choi, Physiol. Rev. 2006, 86,
583.
[4] M. Vadori, M. Seveso, F. Besenzon, E. Bosio, E. Tognato, F.
Fante, M. Boldrin, S. Gavasso, L. Ravarotto, B. Mann, P. Si-
mioni, E. Ancona, R. Motterlini, E. Cozzi, Xenotransplantation
2009, 16, 99.
CO-Release Studies: All UV/Vis measurements were performed
with a Jasco V-670 spectrophotometer at room temperature in a
quartz cuvette (d = 1 cm). Horse skeletal muscle myoglobin (Fluka)
was dissolved in 0.1 phosphate buffer pH = 7.3 and degassed by
bubbling with nitrogen. Then, it was reduced by the addition of an
excess of sodium dithionite in the same solvent, and finally buffer
was added to the cuvette to a total volume of 749 µL. To this solu-
tion, complex (1 µL) dissolved in dimethyl sulfoxide was added to
give a final concentration of 20 µmolL–1 of metal complex and
75 µmolL–1 of myoglobin with A(557 nm) Ͻ 1. Solutions were then
either kept in the dark or irradiated for given time intervals under
nitrogen at 365 nm with a UV hand lamp positioned perpendicular
to the cuvette at a distance of 6 cm. Irradiations were interrupted
at regular intervals to take UV/Vis spectra. All measurements were
carried out in triplicate to analyze the reproducibility of the CO
release.
[5] E. Stagni, M. Privitera, C. Bucolo, G. Leggio, R. Motterlini,
F. Drago, Br. J. Ophthalmol. 2009, 93, 254.
[6] S. Chlopicki, R. Olszanecki, E. Marcinkiewicz, M. Lomnicka,
R. Motterlini, Cardiovasc. Res. 2006, 71, 393.
[7] R. Alberto, R. Motterlini, Dalton Trans. 2007, 1651.
[8] T. R. Johnson, B. E. Mann, R. Foresti, R. Motterlini, Circ.
Res. 2003, 42, 3722.
[9] R. Motterlini, B. E. Mann, R. Foresti, Expert Opin. Invest.
Drugs 2005, 14, 1305.
[10] J. E. Clark, P. Naughton, S. Shurey, C. J. Green, T. R. Johnson,
B. E. Mann, R. Foresti, R. Motterlini, Circ. Res. 2003, 93, e2.
[11] I. J. S. Fairlamb, J. M. Lynam, B. E. Moulton, I. E. Taylor,
A. K. Duhme-Klair, P. Sawle, R. Motterlini, Dalton Trans.
2007, 3603.
[12] P. Sawle, J. Hammad, I. J. S. Fairlamb, B. Moulton, C. T.
O’Brien, J. M. Lynam, A. K. Duhme-Klair, R. Foresti, R.
Motterlini, J. Pharmacol. Exp. Ther. 2006, 318, 403.
[13] I. J. S. Fairlamb, A.-K. Duhme-Klair, J. M. Lynam, B. E.
Moulton, C. T. O’Brien, P. Sawle, J. Hammad, R. Motterlini,
Bioorg. Med. Chem. Lett. 2006, 16, 995.
[14] R. Motterlini, J. E. Clark, R. Foresti, P. Sarathchandra, B. E.
Mann, C. J. Green, Circ. Res. 2002, 90, e17.
[15] J. Niesel, A. Pinto, H. W. Peindy N’Dongo, K. Merz, I. Ott, R.
Gust, U. Schatzschneider, Chem. Commun. 2008, 4292.
[16] H. Pfeiffer, A. Rojas, J. Niesel, U. Schatzschneider, Dalton
Trans. 2009, 4292.
Crystallography: Crystallographic data were collected at 183(2) K
with Mo-Kα radiation (λ = 0.7107 Å) that was graphite-monochro-
mated. Suitable crystals were covered with oil (Infineum V8512,
formerly known as Paratone N), mounted on top of a glass fiber,
and immediately transferred to the diffractometer. The crystals
were measured either with a Stoe IPDS diffractometer [for
4a·H2O·(CH3)2CO and 5b·Et2O] or an Oxford Diffraction Xcalibur
system with a Ruby detector [for 2b, 2b·(CH3)2CO, and 6] (Table 4).
In the case of the IPDS, a maximum of 8000 reflections distributed
over the whole limiting sphere were selected by the program SE-
LECT and used for unit-cell parameter refinement with the pro-
gram CELL.[48] Data were corrected for Lorentz and polarization
effects as well as for absorption (numerical). In the case of the
Oxford system, the program suite CrysAlisPro was used for data
collection, semiempirical absorption correction, and data re-
duction.[49] Structures were solved with direct methods by using
SIR97[50] and were refined by full-matrix least-squares methods on
F2 with SHELXL-97.[51] The structures were checked for higher
symmetry with the help of the program Platon.[52] CCDC-739736,
-739737, -739738, -739739, and -739740 contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.
[17] W. Zhang, A. Atkin, R. Thatcher, A. Whitwood, I. Fairlamb,
J. Lynam, Dalton Trans. 2009, 4351.
[18] A. Atkin, S. Williams, P. Sawle, R. Motterlini, J. Lynam, I.
Fairlamb, Dalton Trans. 2009, 3653.
[19] S. Trofimenko, Polyhedron 2004, 23, 197.
[20] S. Trofimenko, Scorpionates: The Coordination Chemistry of
Polypyrazolylborate Ligands, Imperial College Press, London,
1999.
[21] C. Pettinari, Scorpionates II: Chelating Borate Ligands, Impe-
rial College Press, London, 2008.
[22] P. C. Kunz, W. Kläui, Collect. Czech. Chem. Commun. 2007,
72, 492.
[23] P. Kunz, G. Reiß, W. Frank, W. Kläui, Eur. J. Inorg. Chem.
2003, 3945.
[24] F. J. Wu, D. M. Kurtz Jr, K. S. Hagen, P. D. Nyman, Inorg.
Chem. 1990, 29, 5174.
[25] N. J. Curtis, R. S. Brown, J. Org. Chem. 1980, 45, 4038.
[26] P. C. Kunz, M. U. Kassack, A. Hamacher, B. Spingler, Dalton
Trans. 2009, 7741.
[27] N. Lazarova, S. James, J. W. Babich, J. Zubieta, Inorg. Chem.
Commun. 2004, 7, 1023.
[28] J. A. Casares, P. Espinet, R. Hernando, G. Iturbe, F. Villafane,
D. J. Ellis, A. G. Orpen, Inorg. Chem. 1997, 36, 44.
[29] R. Raturi, J. Lefebvre, D. B. Leznoff, B. R. McGarvey, S. A.
Johnson, Chem. Eur. J. 2008, 14, 721.
[30] H. Han, S. A. Johnson, Eur. J. Inorg. Chem. 2008, 471.
[31] H. Han, S. A. Johnson, Organometallics 2006, 25, 5594.
[32] H. Han, M. Elsmaili, S. A. Johnson, Inorg. Chem. 2006, 45,
7435.
[33] P. S. Braterman, Metal Carbonyl Spectra, Academic Press,
London, 1975.
[34] D. L. Reger, J. R. Gardinier, S. Bakbak, R. F. Semeniuc,
U. H. F. Bunz, M. D. Smith, New J. Chem. 2005, 29, 1035.
Supporting Information (see footnote on the first page of this arti-
cle): Details on crystal data and structure refinement for 2b, 4a, 5b,
and 6; picture of the solid-state structure of 2b·(CH3)2CO.
Acknowledgments
Part of this work was supported by the Deutsche Forschungsge-
meinschaft (DFG) within FOR 630 (“Biological function of orga-
nometallic compounds”) and the Fonds der Chemischen Industrie
(FCI). A. R. thanks the Deutscher Akademischer Austauschdienst
(DAAD) for an International Association for the Exchange of Stu-
dents for Technical Experience (IAESTE) fellowship. U. S. thanks
Eur. J. Inorg. Chem. 2009, 5358–5366
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5365