Germanium Nanomaterials
[29] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89–90.
[30] N. Zaitseva, J. Harper, D. Gerion, C. Saw, Appl. Phys. Lett.
2005, 86, 053105.
Acknowledgments
This work was partially funded by the National Science Founda-
tion (NSF) under Grant NSF CBET-0756776, the Office of Basic
Energy Sciences of the Department of Energy, and the National
Institutes of Health (NIH) through the NIH Roadmap for Medical
Research Grant #1 R21 EB005365-01. Information on this RFA
(Innovation in Molecular Imaging Probes) can be found at http://
[31] D. W. Wang, H. J. Dai, Angew. Chem. Int. Ed. 2002, 41, 4783–
4786.
[32] H. Gerung, S. D. Bunge, T. J. Boyle, C. J. Brinker, S. M. Han,
Chem. Commun. 2005, 1914–1916.
[33] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates,
Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mater. 2003, 15, 353–389.
J. Heath, F. Legoues, Chem. Phys. Lett. 1993, 208, 263–268.
[35] B. R. Taylor, S. M. Kauzlarich, H. W. H. Lee, G. R. Delgado,
grants.nih.gov/grants/guide/rfa-files/RFA-RM-04-021.html. Sandia [34]
is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy under contract DE-AC04-94AL85000.
Chem. Mater. 1998, 10, 22–24.
[36] M. Xuchu, W. Fengyi, S. M. Kauzlarich, J. Solid State Chem.
2008, 181, 1628–1633.
[37] A. J. Bard, R. Parsons, J. Jordan, in: Standard Potentials in
Aqueous Solutions, IUPAC, New York, 1985.
[1] X. An, R. Huang, X. Zhang, Y. Wang, Semicond. Sci. Technol.
2005, 20, 1034–1038.
[2] A. Khakifirooz, D. A. Antoniadis, Electron Device Lett. 2004,
25, 80–82.
[3] L. J. Lauhon, M. S. Gudiksen, C. L. Wang, C. M. Lieber, Na-
ture 2002, 420, 57–61.
[4] C. H. Tu, T. C. Chang, P. T. Liu, C. F. Weng, H. C. Liu, L. T.
Chang, S. K. Lee, W. R. Chen, S. M. Sze, C. Y. Chang, J. Elec-
trochem. Soc. 2007, 154, H435–H439.
[5] K. Gacem, A. El Hdiy, M. Troyon, I. Berbezier, P. D. Szkutnik,
A. Karmous, A. Ronda, J. Appl. Phys. 2007, 102, 093704–
093707.
[6] M. Kanoun, C. Busseret, A. Poncet, A. Souifi, T. Baron, E.
Gautier, Solid State Electron. 2006, 50, 1310–1314.
[7] A. D. Pasquier, D. D. T. Mastrogiovanni, L. A. Klein, T. Wang,
E. Garfunkel, Appl. Phys. Lett. 2007, 91, 183501–183503.
[8] R. Wang, Z. L. Guo, G. P. Wang, Sol. Energy Mater. Sol. Cells
2006, 90, 1052–1057.
[38] T. J. Boyle, B. A. Hernandez-Sanchez, C. M. Baros, M. A. Rod-
riguez, L. N. Brewer, Chem. Mater. 2007, 19, 2016–2026.
[39] T. J. Boyle, S. D. Bunge, T. M. Alam, G. P. Holland, T. J. Head-
ley, G. Avilucea, Inorg. Chem. 2005, 44, 1309–1318.
[40] T. J. Boyle, S. D. Bunge, N. L. Andrews, L. E. Matzen, K. Sieg,
M. A. Rodriguez, T. J. Headley, Chem. Mater. 2004, 16, 3279–
3288.
[41] C. Stanciu, M. Stender, A. F. Richards, M. M. Olmstead, P. P.
Power, Inorg. Chem. 2005, 44, 2774–2780.
[42] F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388.
[43] C. Stanciu, A. F. Richards, M. Stender, M. M. Olmstead, P. P.
Power, Polyhedron 2006, 25, 477–483.
[44] L. W. Pineda, V. Jancik, K. Starke, R. B. Oswald, H. W. Roesky,
Angew. Chem. Int. Ed. 2006, 45, 2602–2605.
[45] C. S. Weinert, A. E. Fenwick, P. E. Fanwick, I. P. Rothwell,
Dalton Trans. 2003, 532–539.
[46] P. Bazinet, G. P. A. Yap, D. S. Richeson, J. Am. Chem. Soc.
2001, 123, 11162–11167.
[47] M. Veith, C. Mathur, V. Huch, J. Chem. Soc., Dalton Trans.
1997, 995–999.
[48] A. Meller, G. Ossig, W. Maringgele, M. Noltemeyer, D. Stalke,
R. Herbst-Irmer, S. Freitag, G. M. Sheldrick, Z. Naturforsch.
B: Chem. Sci. 1992, 47.
[49] T. Fjeldberg, P. B. Hitchcock, M. F. Lappert, S. J. Smith, A. J.
Thorne, J. Chem. Soc., Chem. Commun. 1985, 939–941.
[50] M. F. Lappert, M. J. Slade, J. L. Atwood, M. J. Zaworotko, J.
Chem. Soc., Chem. Commun. 1980, 621–622.
[51] B. Cetinkaya, I. Gumrukcu, M. F. Lappert, J. L. Atwood,
R. D. Rogers, M. J. Zaworotko, J. Am. Chem. Soc. 1980, 102,
2088–2089.
[52] F. E. Hahn, A. V. Zabula, T. Pape, A. Hepp, Eur. J. Inorg.
Chem. 2007, 2405–2408.
[53] M. Driess, S. Yao, M. Brym, C. van Wullen, Angew. Chem. Int.
Ed. 2006, 45, 4349–4352.
[54] W. A. Herrmann, M. Denk, J. Behm, W. Scherer, F.-R. Klin-
gan, H. Bock, B. Solouki, M. Wagner, Angew. Chem. Int. Ed.
Engl. 1992, 31, 1485–1488.
[55] I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, N. M.
Khvoinova, A. Y. Baurin, S. Dechert, M. Hummert, H. Schum-
ann, Organometallics 2004, 23, 3714–3718.
[9] M. P. Deshmukh, J. Nagaraju, Sol. Energy Mater. Sol. Cells
2005, 89, 403–408.
[10] H. Gerung, T. J. Boyle, Y. Zhao, L. Wang, R. K. Jain, S. M.
Han, Appl. Phys. Lett. 2006, 89, 111107–111109.
[11] T. N. Lambert, N. L. Andrews, H. Gerung, T. J. Boyle, J. M.
Oliver, B. S. Wilson, S. M. Han, Small 2007, 3, 691–699.
[12] B. A. Hernandez-Sanchez, T. J. Boyle, T. N. Lambert, S. D.
Daniel-Taylor, J. M. Oliver, B. S. Wilson, D. S. Lidke, N. L. An-
drews, IEEE Trans. Nanobiosci. 2006, 5, 222–230.
[13] S. M. Sze, in: Physics of Semiconductor Devices, 2nd ed., John
Wiley & Sons, New York, 2002.
[14] R. Rosetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys.
1985, 83, 1406–1410.
[15] T. Takagahara, K. Takeda, Phys. Rev. B 1992, 46, 15578–15581.
[16] D. V. Melnikov, J. R. Chelikowsky, Solid State Commun. 2003,
127, 361–365.
[17] C. Bostedt, T. van Buuren, T. M. Willey, N. Franco, L. J. Term-
inello, C. Heske, T. Moller, Appl. Phys. Lett. 2004, 84, 4056–
4058.
[18] J. H. Warner, R. D. Tilley, Nanotechnology 2006, 17, 3745–
3749.
[19] S. Mathur, H. Shen, N. Donia, T. Rugamer, V. Sivakov, U. Wer-
ner, J. Am. Chem. Soc. 2007, 129, 9746–9752.
[20] D. Gerion, N. Zaitseva, C. Saw, M. F. Casula, S. Fakra, T.
Van Buuren, G. Galli, Nano Lett. 2004, 4, 597–602.
[21] H. Gerung, T. J. Boyle, L. J. Tribby, S. D. Bunge, C. J. Brinker,
S. M. Han, J. Am. Chem. Soc. 2006, 128, 5244–5250.
[22] Y. Y. Wu, P. D. Yang, Chem. Mater. 2000, 12, 605.
[23] S. Mathur, H. Shen, V. Sivakov, U. Werner, Chem. Mater. 2004,
16, 2449.
[24] A. M. Morales, C. M. Lieber, Science 1998, 279, 208–211.
[25] T. Hanrath, B. A. Korgel, J. Am. Chem. Soc. 2002, 124, 1424–
1429.
[26] T. Hanrath, B. A. Korgel, Adv. Mater. 2003, 15, 437–440.
[27] P. S. Shah, T. Hanrath, K. P. Johnston, B. A. Korgel, J. Phys.
Chem. B 2004, 108, 9574–9587.
[56]
[57]
[58]
O. Kuhl, P. Lonnecke, J. Heinicke, Polyhedron 2001, 20, 2215–
2222.
T. Gans-Eichler, D. Gudat, K. Nattinen, M. Nieger, Chem. Eur.
J. 2006, 12, 1162–1173.
A. V. Zabula, F. E. Hahn, T. Pape, A. Hepp, Organometallics
2007, 26, 1972–1980.
[59]
[60]
A. Schnepf, Z. Anorg. Allg. Chem. 2006, 632, 935–938.
R. W. Chorley, P. B. Hitchcock, M. F. Lappert, W.-P. Leung,
P. P. Power, M. M. Olmstead, Inorg. Chim. Acta 1992, 198, 203.
M. Veith, A. Rammo, Z. Anorg. Allg. Chem. 2001, 627, 662–
668.
Y. Q. Ding, Q. J. Ma, H. W. Roesky, R. Herbst-Irmer, I. Uson,
M. Noltemeyer, H. G. Schmidt, Organometallics 2002, 21,
5216–5220.
[61]
[62]
[28] T. Hanrath, B. A. Korgel, J. Am. Chem. Soc. 2004, 126, 15466–
15472.
Eur. J. Inorg. Chem. 2009, 5550–5560
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5559