Organic Letters
Letter
Taylor, D. K. J. Org. Chem. 2014, 79, 5088. (c) Kang, B.; Sutou, T.;
Wang, Y.; Kuwano, S.; Yamaoka, Y.; Takasu, K.; Yamada, K. Adv. Synth.
Catal. 2015, 357, 131.
(18) The use of the weak base CsOAc led to a lower diastereomeric
ratio (5:1) compared to the selected DIPEA (7:1) after the same period
of time (4 h). The use of the stronger base DBU also led to a lower
diastereomeric ratio and raises the issue of racemization of the starting α-
amino aldehyde.
(19) In order to improve the reactivity and/or diastereoselectivity of
the reaction, various protecting groups such as tosyl, Fmoc, Moc, N,N′-
Bis(Bn), N-Bn-N-Boc, N-tosyl-N-Boc, N-phthalamide, and N-Bn-N-
PMB were employed. Unfortunately, none of these improved the
reaction outcome.
(20) Although the fate of the unaccounted for N-Boc-amino aldehyde
is still unclear, we were able to isolate a small amount of aldehyde−NHC
adduct consistent with an SNAr pathway: Zhao, X.; Glover, G. S.; Oberg,
K. M.; Dalton, D. M.; Rovis, T. Synlett 2013, 24, 1229.
(21) Although sterically similar, the use of N-Boc-phenylglycinal
results in poor yields and low diastereomeric ratios under these reaction
conditions.
(22) The reasons for the somewhat better diastereoselectivities
observed with aliphatic aldehydes are unclear at this point.
(23) The proposed Cram-chelate model was further validated by
subjecting N-Boc-N-Bn-alaninal to the reaction conditions. The other
diastereomer was favored in this experiment. Work is ongoing, and
results will be reported in due course.
(24) (a) Lubell, W. D.; Rapoport, H. J. Am. Chem. Soc. 1987, 109, 236.
(b) Myers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Lanman, B.
A.; Kwon, S. Tetrahedron Lett. 2000, 41, 1359. (c) Gryko, D.; Chalko, J.;
Jurczak, J. Chirality 2003, 15, 514.
(25) (a) Brodesser, S.; Sawatzki, P.; Kolter, T. Eur. J. Org. Chem. 2003,
2003, 2021. (b) Curfman, C.; Liotta, D. Methods Enzymol. 2000, 311,
391. (c) Howell, A. R.; Ndakala, A. J. Curr. Org. Chem. 2002, 6, 365.
(d) Liao, J.; Tao, J.; Lin, G.; Liu, D. Tetrahedron 2005, 61, 4715.
(26) (a) Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Tetrahedron
1994, 50, 2771. (b) Li, H.; Matsunaga, S.; Fusetani, N. Tetrahedron
1995, 51, 2273. (c) Kobayashi, S.; Furuta, T.; Hayashi, T.; Nishijima, M.;
Hanada, K. J. Am. Chem. Soc. 1998, 120, 908. (d) Kolter, T.; Sandhoff, K.
Angew. Chem., Int. Ed. 1999, 38, 1532. (e) Mormeneo, D.; Casas, J.;
Llebaria, A.; Delgado, A. Org. Biomol. Chem. 2007, 5, 3769. (f) Lee, D.
H.; Kim, S. H.; Ahn, K. H.; Kim, S. K.; Choi, J. M.; Ji, J. E.; Won, J. H.;
Park, Y. H.; Lim, C.; Kim, S.; Kim, D. K. Arch. Pharmacal Res. 2011, 34,
229.
(27) For recent syntheses of phytosphingosines, see: (a) Lee, Y. M.;
Baek, D. J.; Lee, S.; Kim, D.; Kim, S. J. Org. Chem. 2011, 76, 408. (b) Mu,
Y.; Jin, T.; Kim, G.-W.; Kim, J.-S.; Kim, S.-S.; Tian, Y.-S.; Oh, C.-Y.;
Ham, W.-H. Eur. J. Org. Chem. 2012, 2012, 2614. (c) Calder, E. D. D.;
Zaed, A. M.; Sutherland, A. J. Org. Chem. 2013, 78, 7223. (d) Sarabia, F.;
Vivar-Garcia, C.; Garcia-Ruiz, C.; Sanchez-Ruiz, A.; Pino-Gonzalez, M.
S.; Garcia-Castro, M.; Chammaa, S. Eur. J. Org. Chem. 2014, 2014, 3847.
(28) (a) Mulzer, J.; Brand, C. Tetrahedron 1986, 42, 5961. (b) Imashiro,
R.; Sakurai, O.; Yamashita, T.; Horikawa, H. Tetrahedron 1998, 54,
10657. (c) Shirota, O.; Nakanishi, K.; Berova, N. Tetrahedron 1999, 55,
13643. (d) Azuma, H.; Tamagaki, S.; Ogino, K. J. Org. Chem. 2000, 65,
3538. (e) Jung, D. Y.; Kang, S.; Chang, S. B.; Kim, Y. H. Synlett 2005,
REFERENCES
■
(1) (a) Hanessian, S. Total Synthesis of Natural Products: The “Chiron”
Approach; Pergamon Press: Oxford, 1983; Vol. 3. (b) Palomo, C.;
Oiarbide, M.; García, J. M. Chem. Soc. Rev. 2012, 41, 4150.
(2) For selected reviews, see: (a) Davis, F.; Chen, B. C. Chem. Rev.
1992, 92, 919. (b) Adam, W.; Lazarus, M.; Saha-Moller, C. R.; Schreier,
P. Acc. Chem. Res. 1999, 32, 837. (c) Moriarty, R. M. J. Org. Chem. 2005,
70, 2893. (d) Vilaivan, T.; Bhanthumnavin, W. Molecules 2010, 15, 917.
(e) Merritt, E. A.; Olofsson, B. Synthesis 2011, 2011, 517. (f) Dong, D.-
Q.; Hao, S.-H.; Wang, Z.-L.; Chen, C. Org. Biomol. Chem. 2014, 12,
4278. For selected examples of enantioselective α-hydroxylation of
ketones, see: (g) Morikawa, K.; Park, J.; Andersson, P. G.; Hashiyama,
T.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 8463. (h) Momiyama,
N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080. (i) Kawasaki, M.;
Li, P.; Yamamoto, H. Angew. Chem., Int. Ed. 2008, 47, 3795.
(j) Basdevant, B.; Legault, C. Y. Org. Lett. 2015, 17, 4918.
̈
(3) For recent reviews on NHC-catalyzed transformations, see:
(a) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314.
(b) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511. (c) Thai, K.;
́
Sanchez-Larios, E.; Gravel, M. In Comprehensive Enantioselective
Organocatalysis: Catalysts, Reactions, and Applications; Wiley−VCH:
Weinheim, 2013; pp 495−522. (d) Scheidt, K. A.; O’Bryan, E. A.
Acyloin Coupling Reactions. In Comprehensive Organic Synthesis II, 2nd
ed.; Marek, I., Knochel, P., Eds.; Elsevier, 2014; Vol. 3, pp 621−655.
(e) Bugaut, X., Benzoin and Aza-benzoin. In Comprehensive Organic
Synthesis II; Marek, I., Knochel, P., Ed.; Elsevier: 2014; Vol. 1, pp 424−
470. (f) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature
2014, 510, 485. (g) Flanigan, D. M.; Romanov-Michailidis, F.; White, N.
A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
(4) The involvement of a radical pair pathway has recently been
proposed: Rehbein, J.; Ruser, S.-M.; Phan, J. Chem. Sci. 2015, 6, 6013.
(5) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.
(6) The terms “acyloin reaction” and “cross-acyloin reaction” are often
used to describe benzoin reactions involving aliphatic aldehydes.
(7) (a) Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125,
8432. (b) Takikawa, H.; Hachisu, Y.; Bode, J. W.; Suzuki, K. Angew.
Chem., Int. Ed. 2006, 45, 3492. (c) Enders, D.; Niemeier, O.; Balensiefer,
T. Angew. Chem., Int. Ed. 2006, 45, 1463. (d) Enders, D.; Niemeier, O.;
Raabe, G. Synlett 2006, 2006, 2431. (e) Li, Y.; Feng, Z.; You, S.-L. Chem.
Commun. 2008, 2263. (f) Enders, D.; Henseler, A. Adv. Synth. Catal.
2009, 351, 1749. (g) Ema, T.; Oue, Y.; Akihara, K.; Miyazaki, Y.; Sakai,
T. Org. Lett. 2009, 11, 4866. (h) Enders, D.; Grossmann, A.; Fronert, J.;
Raabe, G. Chem. Commun. 2010, 46, 6282. (i) Takada, A.; Hashimoto,
Y.; Takikawa, H.; Hikita, K.; Suzuki, K. Angew. Chem., Int. Ed. 2011, 50,
2297. (j) Rose, C. A.; Gundala, S.; Fagan, C.-L.; Franz, J. F.; Connon, S.
J.; Zeitler, K. Chem. Sci. 2012, 3, 735. (k) Thai, K.; Langdon, S. M.;
Bilodeau, F.; Gravel, M. Org. Lett. 2013, 15, 2214.
(8) Mathies, A.; Mattson, A.; Scheidt, K. Synlett 2009, 2009, 377.
(9) Stetter, H.; Dambkes, G. Synthesis 1977, 1977, 403.
(10) Pohl, M.; Lingen, B.; Muller, M. Chem. - Eur. J. 2002, 8, 5288.
(11) Piel, I.; Pawelczyk, M. D.; Hirano, K.; Frohlich, R.; Glorius, F. Eur.
J. Org. Chem. 2011, 2011, 5475.
(12) Kuhl, N.; Glorius, F. Chem. Commun. 2011, 47, 573.
(13) (a) Jin, M. Y.; Kim, S. M.; Han, H.; Ryu, D. H.; Yang, J. W. Org.
Lett. 2011, 13, 880. (b) Jin, M. Y.; Kim, S. M.; Mao, H.; Ryu, D. H.; Song,
C. E.; Yang, J. W. Org. Biomol. Chem. 2014, 12, 1547.
̈
̈
̌
2183. (f) Enders, D.; Palecek, J.; Grondal, C. Chem. Commun. 2006, 55,
655. (g) Mormeneo, D.; Casas, J.; Llebaria, A.; Delgado, A. Org. Biomol.
Chem. 2007, 5, 3769. (h) Kim, S.; Lee, N.; Lee, S.; Lee, T.; Lee, Y. M. J.
Org. Chem. 2008, 73, 1379.
(14) (a) O’Toole, S. E.; Rose, C. A.; Gundala, S.; Zeitler, K.; Connon,
S. J. J. Org. Chem. 2011, 76, 347. (b) Rose, C.; Gundala, S.; Connon, S.;
Zeitler, K. Synthesis 2011, 2011, 190.
(15) Collett, C. J.; Massey, R. S.; Taylor, J. E.; Maguire, O. R.;
O’Donoghue, A. C.; Smith, A. D. Angew. Chem., Int. Ed. 2015, 54, 6887.
(16) (a) Langdon, S. M.; Wilde, M. M. D.; Thai, K.; Gravel, M. J. Am.
Chem. Soc. 2014, 136, 7539. (b) Langdon, S. M.; Legault, C. Y.; Gravel,
M. J. Org. Chem. 2015, 80, 3597.
(17) (a) Muller, C. R.; Per
Org. Biomol. Chem. 2013, 11, 2000. (b) Stockton, K. P.; Greatrex, B. W.;
́
ez-San
́
chez, M.; Domínguez de María, P.
̈
D
Org. Lett. XXXX, XXX, XXX−XXX