J.G. Małecki / Polyhedron 29 (2010) 1973–1979
1979
Table 4
Energy decomposition analysis for complexes [Ru(SCN)2(PPh3)2(py)2] (1), [Ru(SCN)2(PPh3)2(c-pic)2] (2), [Ru(SCN)2(PPh3)2(py-2-CH2 NH2)] (3) and [Ru(SCN)2(PPh3)2(py-2-CH2O)]
(4) as the [Ru(SCN)2(PPh3)2] fragment and the py,
c
-pic, py-2-CH2NH2, py-2-CH2O ligands (energies in kcal molꢁ1).
Energy (kcal/mol) [Ru(SCN)2(PPh3)2(py)2]
[Ru(SCN)2(PPh3)2(
c
-pic)2]
[Ru(SCN)2(PPh3)2(py-2-CH2NH2)]
[Ru(SCN)2(PPh3)2(py-2-CH2O)]
Gas phase
CH3OH solvent
Gas phase
CH3OH solvent
Gas phase
CH3OH solvent
Gas phase
CH3OH solvent
D
D
D
D
D
D
Eelstat
Ekinetic
ECoulomb
EXC
Esolvation
E
ꢁ136.37
240.43
ꢁ87.09
ꢁ81.20
ꢁ137.71
314.67
ꢁ139.42
ꢁ96.65
ꢁ23.16
ꢁ82.27
ꢁ154.34
324.95
ꢁ154.34
395.18
ꢁ183.65
ꢁ113.89
ꢁ22.68
ꢁ79.37
ꢁ213.12
323.31
ꢁ213.12
340.06
ꢁ237.23
397.00
ꢁ237.23
478.68
ꢁ133.63
ꢁ151.16
ꢁ141.72
ꢁ201.96
ꢁ40.39
ꢁ240.23
ꢁ301.24
ꢁ127.56
ꢁ21.97
(Steric+OrbInt)
ꢁ99.06
ꢁ185.44
ꢁ111.95
ꢁ64.24
ꢁ62.09
ꢁ226.42
ꢁ257.13
ꢁ192.41
ꢁ209.32
4. Supplementary data
CCDC 758952, 761475, 760151 and 759146 contain the supple-
mentary crystallographic data for the complexes [Ru(SCN)2(PPh3)2-
(py)2], [Ru(SCN)2(PPh3)2(c-pic)2]ꢂCH3OH [Ru(SCN)2(PPh3)2(py-2-
CH2NH2)] and [Ru(SCN)2(PPh3)2(py-2-CH2O)]ꢂCH3OH, respectively.
graphic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44) 1223–336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Calculations have been carried out at the Wroclaw Centre for
Networking and Supercomputing (http://www.wcss.wroc.pl).
References
[1] X.-Y. Lu, H.-J. Xu, X.-T. Chen, Inorg. Chem. Commun. 12 (2009) 887.
[2] V. Dragutan, I. Dragutan, L. Delaude, A. Demonceau, Coord. Chem. Rev. 251
(2007) 765.
[3] J.B. Coe, J.S. Glenwright, Coord. Chem. Rev. 203 (2000) 5.
[4] E.A. Medlycott, G.S. Hanan, Coord. Chem. Rev. 250 (2006) 1763.
[5] J. Otsuki, T. Akasaka, K. Araki, Coord. Chem. Rev. 252 (2008) 32.
[6] F. Puntoriero, S. Campagna, A.-M. Stadler, J.-M. Lehn, Coord. Chem. Rev. 252
(2008) 2480.
Fig. 6. The overlap partial density of states (OPDOS) diagrams for the interaction
between the ruthenium central ion and the N-donor ligands in the studied
complexes.
[7] Yu.E. Alexeev, B.I. Kharisov, T.C.H. Garcia, A.D. Garnovskii, Coord. Chem. Rev.
254 (2010) 794.
[8] H.E. Toma, K. Araki, Coord. Chem. Rev. 196 (2000) 307.
[9] Li-Feng Tan, H. Chao, K.-Ch. Zhen, J.-J. Fei, F. Wang, Y.-F. Zhou, L.-N. Ji,
Polyhedron 26 (2007) 5458.
parameters are b55 = 0.54, 0.67 and 0.66 for compounds 1, 2 and 3,
respectively. The spectroscopic parameters have been calculated
on the basis of the pseudooctahedral geometry of these complexes.
The calculations of the C parameter have been based on intercom-
bination transitions (1A1 ? 3T1; 1A1 ? 3T2) covered by the bands
observed in the visible energy region of the spectra.
The ruthenium(III) complex with the 2-(hydroxymethyl)pyri-
dine ligand displayed bands at 510.6, 329.2, 276.6 and 215.0 nm,
and for this compound bands are expected in the NIR region. The
spectrum in this energy range was not measured and for that rea-
son the 10Dq and Racah’s parameters were not determined for the
complex. Based on the calculated electronic spectrum, the first
experimental band is attributed to HOMO–5/6 ? LUMO transitions
[10] J.G. Małecki, M. Jaworska, R. Kruszynski, R. Gil-Bortnowska, Polyhedron 24
(2005) 1445.
[11] R. Kruszynski, J.G. Małecki, Acta. Crystallogr., Sect. E63 (2007) m3052.
[12] Md.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, N.
Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382.
[13] T.A. Stephenson, G. Wilkonson, J. Inorg. Nucl. Chem. 28 (1966) 945.
[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, GAUSSIAN 09, Revision A.1, Gaussian Inc.,
Wallingford, CT, 2009.
(68%, 34%) and has d ? d character with
a contribution of
d ? p*PPh3/Py-2-CH2O charge transfer transitions. In the energy re-
gion adequate to the experimental bands with maxima at 329.2
and 276.6 nm, HOMO ? LUMO+1(a)/2(b) (81%) and HOMO ? LU-
MO+4 (67%), HOMOꢁ23(b) ? LUMO(b) (64%) transitions were cal-
culated, among others, therefore these bands have MLCT and LMCT
character. The highest energy band is assigned to LLCT transitions.
In summary, the four new ruthenium complexes with thiocya-
nate, triphenylphosphine and N-heteroaromatic ligands have been
synthesized and their crystal structures determined. In the struc-
tures of all the studied complexes, the triphenylphosphine ligands
are in cis positions. The electronic structures of the obtained com-
plexes were calculated. The collected data from NBO, Mayer bond
[15] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[16] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[17] M.E. Casida, in: J.M. Seminario (Ed.), Recent Developments and Applications of
Modern Density Functional Theory, Theoretical and Computational Chemistry,
vol. 4, Elsevier, Amsterdam, 1996, p. 391.
[18] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chim. Acta 97 (1997)
119.
[19] N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29 (2008) 839.
[20] Dolomanov et al., Appl. Crystallogr., Sect. 42 (2009) 339.
[21] M.G.B. Drew, A.H. Bin-Othman, S.M. Nelson, J. Chem. Soc., Dalton Trans. (1976)
1394.
orders and energy decomposition analyses indicate that the
acceptor properties of pyridine and 2-(hydroxymethyl)pyridine,
as well as -picoline and 2-(aminomethyl)pyridine, are compara-
p-
[22] K.J. Morokuma, Chem. Phys. 55 (1971) 1236.
[23] T. Ziegler, A. Rauk, Theor. Chim. Acta 46 (1977) 1.
[24] ADF2009.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The
[25] F.M. Bickelhaupt, E.J. Baerends, Kohn-Sham, Predicting and understanding
chemistry, in: K.B. Lipkowitz, D.B. Boyd (Eds.), Rev. Comput. Chem., vol. 15,
Wiley-VCH, New York, 2000, p. 1.
c
ble in pairs. The values of the ligand field parameter 10Dq and Ra-
cah’s parameters were calculated for the studied compounds 1, 2
and 3.