Inhibition of Mycobacterial Growth by Plumbagin Derivatives
6. Zhang Y. (2005) The magic bullets and tuberculosis drug targets.
Annu Rev Pharmacol Toxicol;45:529–564.
22. Meganathan R. (2001) Biosynthesis of menaquinone (vitamin K2)
and ubiquinone (coenzyme Q): a perspective on enzymatic mech-
anisms. Vitam Horm;61:173–218.
23. Meganathan R., Bentley R. (1981) Biosynthesis of o-succinylben-
zoic acid in a men – Escherichia coli mutant requires decarbox-
ylation of L-glutamate at the C-1 position. Biochemistry;
20:5336–5340.
24. Bentley R., Meganathan R. (1982) Biosynthesis of vitamin K
(menaquinone) in bacteria. Microbiol Rev;46:241–280.
25. Truglio J.J., Theis K., Feng Y., Gajda R., Machutta C., Tonge P.J.,
Kisker C.J. (2003) Crystal structure of Mycobacterium tuberculo-
sis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol
Chem;278:42352–42360.
26. Gutierrez J.A., Crowder T., Rinaldo-Matthis A., Ho M.-C., Almo
S.C., Schramm V.L. (2009) Transition state analogs of 5¢-methyl-
thioadenosine nucleosidase disrupt quorum sensing. Nat Chem
Biol;5:251–257.
27. Van der Vijver L.M. (1972) Distribution of plumbagin in the
Plumbaginaceae. Phytochemistry;11:3247–3248.
28. de Paiva S.R., Figueiredo M.R., Arag¼o T.V., Kaplan M.A.C.
(2003) Antimicrobial activity in vitro of plumbagin isolated from
Plumbago species. Mem Inst Oswaldo Cruz, Rio de Janeiro;
98:959–961.
29. de Lima O.G., d'Albuquerque I.L., Maciel G.M., Maciel M.C.
(1968) Antimicrobial substances of superior plants. XXVII. Isola-
tion of plumbagin from Plumbago scandens L. Rev Inst Antibiot
(Recife);8:95–97.
30. Borges-Argꢀez R., Canche-Chay C.I., PeÇa-Rodrꢁguez L.M., Said-
Fernꢀndez S., Molina-Salinas G.M. (2007) Antimicrobial activity
of Diospyros anisandra. Fitoterapia;78:370–372.
7. Anishetty S., Pulimi M., Pennathur G. (2005) Potential drug tar-
gets in Mycobacterium tuberculosis through metabolic pathway
analysis. Comput Biol Chem;29:368–378.
8. Raman K., Yeturu K., Chandra N. (2008) Target TB: a target iden-
tification pipeline for Mycobacterium tuberculosis through an in-
teractome, reactome and genome-scale structural analysis. BMC
Syst Biol;2:109–130.
9. Sherman M.M., Petersen L.A., Poulter C.D. (1989) Isolation and
characterization of isoprene mutants of Escherichia coli. J Bacte-
riol;171:3619–3628.
10. Lester R.L., Crane F.L. (1959) The natural occurrence of coenzyme
Q and related compounds. J Biol Chem;234:2169–2175.
11. Noll H. (1958) The chemistry of the native constituents of the
acetone-soluble fat of Mycobacterium tuberculosis (Brevannes).
II. Isolation and properties of a new crystalline naphthoquinone
derivative related to vitamin K2. J Biol Chem;232:919–929.
12. Segel W.P., Goldman D.S. (1963) The requirement for a naphtho-
quinone in the reduced nicotinamide-adenine dinucleotide oxi-
dase system of Mycobacterium tuberculosis. Biochim Biophys
Acta;73:380–390.
13. Kusunose E., Goldman D.S. (1963) The enzymic reduction of
naphthoquinones by reduced nicotinamide-adenine dinucleotide.
Biochim Biophys Acta;73:391–398.
14. Dowd P., Ham S.W., Naganathan S., Hershline R. (1995) The
mechanism of action of vitamin K. Annu Rev Nutr;15:419–440.
15. Suttie J.W. (1995) The importance of menaquinones in human
nutrition. Annu Rev Nutr;15:399–417.
16. Weinstein E.A., Yano T., Li L.S., Avarbock D., Avarbock A., Helm
D., McColm A.A., Duncan K., Lonsdale J.T., Rubin H. (2005)
Inhibitors of type II NADH: menaquinone oxidoreductase repre-
sent a class of antitubercular drugs. Proc Natl Acad Sci
USA;102:4548–4553.
17. Kurosu M., Narayanasamy P., Biswas K., Dhiman R., Crick D.C.
(2007) Discovery of 1,4-dihydroxy-2-naphthoate prenyltransferase
inhibitors: new drug leads for multidrug-resistant gram-positive
pathogens. J Med Chem;50:3973–3975.
18. Lu X., Zhang H., Tonge P.J., Tan D.S. (2008) Mechanism-based
inhibitors of MenE, an acyl-CoA synthetase involved in bacterial
menaquinone biosynthesis. Bioorg Med Chem Lett;18:5963–5966.
19. Kurosu M., Crick D.C. (2009) MenA is a promising drug target
for developing novel lead molecules to combat Mycobacterium
tuberculosis. Med Chem;5:197–207.
20. Dhiman R.K., Mahapatra S., Slayden R.A., Boyne M.E., Lenaerts
A., Hinshaw J.C., Angala S.K., Chatterjee D., Biswas K., Naray-
anasamy P., Kurosu M., Crick D.C. (2009) Menaquinone synthesis
is critical for maintaining mycobacterial viability during exponen-
tial growth and recovery from non-replicating persistence. Mol
Microbiol;72:85–97.
31. Tran T., Saheba E., Arcerio A.V., Chavez V., Li Q.Y., Martinez L.E.,
Primm T.P. (2004) Quinones as antimycobacterial agents. Bioorg
Med Chem;12:4809–4813.
32. Copp B.R., Pearce A.N. (2007) Natural product growth inhibitors
of Mycobacterium tuberculosis. Nat Prod Rep;24:278–297.
33. Reyrat J.-M., Kahn D. (2001) Mycobacterium smegmatis: an
absurd model for tuberculosis? Trends Microbiol;9:472–473.
34. Ojha A.K., Mukherjee T.K., Chatterji D. (2000) High intracellular
level of guanosine tetraphosphate in Mycobacterium smegmatis
changes the morphology of the bacterium. Infect Immun;
68:4084–4091.
35. Naresh K., Bharati B.K., Jayaraman N., Chatterji D. (2008) Syn-
thesis and mycobacterial growth inhibition activities of bivalent
and monovalent arabinofuranoside containing alkyl glycosides.
Org Biomol Chem;6:2388–2393.
36. Taneja N.K., Tyagi J.S. (2007) Resazurin reduction assays for
screening of anti-tubercular compounds against dormant and
actively growing Mycobacterium tuberculosis, Mycobacterium
bovis BCG and Mycobacterium smegmatis. J Antimicrob Chemo-
ther;60:288–293.
21. Meganathan R. (1996) Biosynthesis of the isoprenoid quinones
menaquinone (vitamin K2) and ubiquinone (coenzyme Q). In:
Neidhardt F.C., Curtiss R. III, Ingraham J.L., Lin E.C.C., Low K.B.,
Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbar-
ger H.E., editors. Escherichia coli and Salmonella: Cellular and
Molecular Biology, 2nd edn. Washington, D.C., USA: American
Society for Microbiology; p. 642–656.
37. Mathew R., Mukherjee R., Balachandar R., Chatterji D. (2006)
Deletion of the rpoZ gene, encoding the omega subunit of RNA
polymerase, results in pleiotropic surface-related phenotypes in
Mycobacterium smegmatis. Microbiology;152:1741–1750.
38. O'Toole G.A., Pratt L.A., Watnick P.I., Newman D.K., Weaver
V.B., Kolter R. (1999) Genetic approaches to study of biofilms.
Methods Enzymol;310:91–109.
Chem Biol Drug Des 2010; 76: 34–42
41