Solvent-Free Ball Milling Biginelli Reaction
Stang, Chem. Rev. 2011, 111, 6810–6918; f) K. Acharyya, S.
Mukherjee, P. S. Mukherjee, J. Am. Chem. Soc. 2013, 135, 554–
557.
K. Ruiz-Mirazo, C. Briones, A. de la Escosura, Chem. Rev.
2014, 114, 285–366.
ure 4) to be used directly for synthetic transformations. This
methodology is green, economical and does not use harsh
conditions. We hope that this methodology will serve as an
important addition to organic synthesis and industries.
In summary, we presented here a novel approach of sys-
tems chemistry for thermodynamically stable small mol-
ecules in the field of covalent mechanochemistry. This strat-
egy represents a new level of complexity in mechanochemi-
cal reactions by using ball-milling in which subcomponents
were synthesized and used for post-synthetic transforma-
tions in a multicomponent reaction within the same reac-
tion pot. Interestingly, we have also shown for the first time
that a byproduct obtained from a reaction system is used
as a catalyst for another reaction. The irreproducibility of
solution-based methodology for the synthesis of DHPMS
also demonstrates the superiority of this mechanochemical
system. We believe this environmental friendly and econom-
ical methodology will be an important addition to drug dis-
covery and development,[25] because DHPMs are well
known to have diverse biological activities[26] including anti-
cancer properties.[27] Finally, the systems chemistry we de-
scribed here for small molecules may branch out to a new
field of study in covalent mechanochemistry.[21]
[6]
[7]
a) E. R. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed.
2007, 46, 72–191; Angew. Chem. 2007, 119, 72; b) B. Lewan-
dowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M. J.
Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup,
D. M. D’Souza, A. E. Fernandes, D. A. Leigh, Science 2013,
339, 189–193.
a) P. D. Frischmann, V. Kunz, V. Stepanenko, F. Würthner,
Chem. Eur. J. 2015, 21, 2766–2769; b) A. M. Castilla, W. J.
Ramsay, J. R. Nitschke, Acc. Chem. Res. 2014, 47, 2063–2073;
c) H. Bunzen, Nonappa, E. Kalenius, S. Hietala, E. Ko-
lehmainen, Chem. Eur. J. 2013, 19, 12978–12981; d) X.-P.
Zhou, Y. Wu, D. Li, J. Am. Chem. Soc. 2013, 135, 16062–
16065; e) D. H. Ren, D. Qiu, C. Y. Pang, Z. Li, Z. G. Gu,
Chem. Commun. 2014, 51, 788–791.
a) C. Giri, F. Topic, M. Cametti, K. Rissanen, Chem. Sci. 2015,
6, 5712–5718; b) C. Giri, P. K. Sahoo, R. Puttreddy, K. Ris-
sanen, P. Mal, Chem. Eur. J. 2015, 21, 6390–6393.
T. K. Achar, S. Maiti, P. Mal, RSC Adv. 2014, 4, 12834–12839.
a) R. S. Varma, Green Chem. 2014, 16, 2027–2041; b) G. Crav-
otto, E. C. Gaudino, P. Cintas, Chem. Soc. Rev. 2013, 42, 7521–
7534; c) D. Braga, L. Maini, F. Grepioni, Chem. Soc. Rev. 2013,
42, 7638–7648; d) S. L. James, C. J. Adams, C. Bolm, D. Braga,
P. Collier, T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett,
W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Par-
kin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc.
Rev. 2012, 41, 413–447; e) T. Frisˇcˇic´, I. Halasz, P. J. Beldon,
A. M. Belenguer, F. Adams, S. A. J. Kimber, V. Honkimäki,
R. E. Dinnebier, Nature Chem. 2013, 5, 66–73; f) P. Balaz, M.
Achimovicova, M. Balaz, P. Billik, Z. Cherkezova-Zheleva,
J. M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F. J. Gotor, R.
Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczo-
rek-Ciurowa, Chem. Soc. Rev. 2013, 42, 7571–7637; g) J. G.
Hernández, C. G. Avila-Ortiz, E. Juaristi, in Comprehensive Or-
ganic Synthesis II, 2nd ed., (Ed.: P. Knochel), Elsevier, Amster-
dam, 2014, pp. 287–314.
[8]
[9]
[10]
[11]
Experimental Section
Detailed experimental procedures are given in the Supporting In-
formation.
Supporting Information (see footnote on the first page of this arti-
cle): The file contains the details of experimental methods, spectro-
scopic investigations, synthetic procedure, characterization data
and spectra of the compounds.
[12]
[13]
S. Ley, M. O’Brien, R. Denton, Synthesis 2011, 1157–1192.
a) A. Stolle, T. Szuppa, S. E. S. Leonhardt, B. Ondruschka,
Chem. Soc. Rev. 2011, 40, 2317–2329; b) G.-W. Wang, Chem.
Soc. Rev. 2013, 42, 7668–7700; c) J. G. Hernández, E. Juaristi,
J. Org. Chem. 2010, 75, 7107–7111.
Acknowledgments
We are thankful to Department of Science and Technology (DST)
(New Delhi, India; Grant no. INT/FINLAND/P-06 and SR/S1/IC-
59/2010) for financial support. P. K. S. and A. B. are thankful to
University Grants Commission (UGC) and Council of Scientific
and Industrial Research (CSIR) (India), respectively for fellowship.
[14]
[15]
J.-L. Do, C. Mottillo, D. Tan, V. Strukil, T. Friscic, J. Am.
Chem. Soc. 2015, 137, 2476–2479.
a) S. Maiti, P. Mal, Adv. Synth. Catal. 2015, 357, 1416–1424;
b) T. K. Achar, P. Mal, J. Org. Chem. 2015, 80, 666–672; c) S.
Maiti, P. Mal, Synth. Commun. 2014, 44, 3461–3469; d) A.
Bose, P. Mal, Tetrahedron Lett. 2014, 55, 2154–2156.
M. Valko, H. Morris, M. T. D. Cronin, Curr. Med. Chem. 2005,
12, 1161–1208.
V. V. Zhdankin, in Hypervalent Iodine Chemistry, John Wiley &
Sons Ltd, 2013, pp. 145–336.
H. Hussain, I. R. Green, I. Ahmed, Chem. Rev. 2013, 113,
3329–3371.
a) S. Adimurthy, P. U. Patoliya, Synth. Commun. 2007, 37,
1571–1577; b) J.-C. Fan, Z.-C. Shang, J. Liang, X.-H. Liu, Y.
Liu, J. Phys. Org. Chem. 2008, 21, 945–953.
K. Moriyama, M. Takemura, H. Togo, J. Org. Chem. 2014, 79,
6094–6104.
a) J. Ribas-Arino, D. Marx, Chem. Rev. 2012, 112, 5412–5487;
b) J. Ribas-Arino, M. Shiga, D. Marx, Angew. Chem. Int. Ed.
2009, 48, 4190–4193; Angew. Chem. 2009, 121, 4254; c) J.
Wang, T. B. Kouznetsova, Z. Niu, M. T. Ong, H. M. Klukov-
ich, A. L. Rheingold, T. J. Martinez, S. L. Craig, Nature Chem.
2015, 7, 323–327.
[16]
[17]
[18]
[19]
[1] S. Zharikov, S. Shiva, Biochem. Soc. Trans. 2013, 41, 118–123.
[2] K. L. Morris, L. Chen, J. Raeburn, O. R. Sellick, P. Cotanda,
A. Paul, P. C. Griffiths, S. M. King, R. K. O’Reilly, L. C. Ser-
pell, D. J. Adams, Nature Commun. 2013, 4, 1480.
[3] J. Snoep, H. Westerhoff, in Systems Biology, vol. 13 (Eds.: L.
Alberghina, H. V. Westerhoff), Springer Berlin Heidelberg,
2005, pp. 13–30.
[4] a) N. Giuseppone, Acc. Chem. Res. 2012, 45, 2178–2188; b)
J. R. Nitschke, Nature 2009, 462, 736–738; c) R. F. Ludlow, S.
Otto, Chem. Soc. Rev. 2008, 37, 101–108.
[5] a) M. L. Saha, N. Mittal, J. W. Bats, M. Schmittel, Chem. Com-
mun. 2014, 50, 12189–12192; b) D. Lewing, H. Koppetz, F. E.
Hahn, Inorg. Chem. 2015, 54, 7653–7659; c) K. Pandurangan,
J. A. Kitchen, S. Blasco, E. M. Boyle, B. Fitzpatrick, M.
Feeney, P. E. Kruger, T. Gunnlaugsson, Angew. Chem. Int. Ed.
2015, 54, 4566–4570; d) J. E. Beves, J. J. Danon, D. A. Leigh,
J.-F. Lemonnier, I. J. Vitorica-Yrezabal, Angew. Chem. Int. Ed.
2015, 54, 7555–7559; e) R. Chakrabarty, P. S. Mukherjee, P. J.
[20]
[21]
[22]
C. O. Kappe, J. Org. Chem. 1997, 62, 7201–7204.
Eur. J. Org. Chem. 2015, 6994–6998
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6997