3288
S. K. Kim et al. / Tetrahedron Letters 51 (2010) 3286–3289
of Korea (NRF) and the Converging Research Center Program
through NRF funded by the Ministry of Education, Science and
Technology (2009-0093677). Mass spectral data were obtained
from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700
high resolution mass spectrometer.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302; (b) de Silva, A. P.; Gunaratne, H.
Q. N.; Gunnlaugsson, T. A.; Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice,
T. E. Chem. Rev. 1997, 97, 1515; (c) Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc.
Chem. Res. 2009, 42, 23; (d) Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780;
(e) Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127; (f) Kim, S.
K.; Kim, H. N.; Zhu, X.; Lee, H. N.; Lee, H. N.; Soh, J. H.; Swamy, K. M. K.; Yoon, J.
Supramol. Chem. 2007, 19, 221; (g) Chen, X.; Kang, S.; Kim, M. J.; Kim, J.; Kim, Y.
S.; Kim, H.; Chi, B.; Kim, S.-J.; Lee, J. Y.; Yoon, J. Angew. Chem., Int. Ed. 2010, 49,
1422; (h) Lee, C.-H.; Miyaji, H.; Yoon, D.-W.; Sessler, J. L. Chem. Commun. 2008,
24.
Figure 5. Fluorescent changes of 3 (3 lM) with various metal ions (150 lM) in
CH3CN–DDW (9:1, v/v) (kex = 510 nm, Slit: 3 nm/5 nm).
2. (a) ATSDR, Toxicological Profile for Mercury, U.S. Department of Health and
Human Services, Atlanta, GA, 1999.; (b) Harada, M. Crit. Rev. Toxicol. 1995, 25, 1.
3. Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443.
4. (a) Kwon, J. Y.; Soh, J. H.; Yoon, Y. J.; Yoon, J. Supramol. Chem. 2004, 16, 621; (b)
Yang, Y.-K.; Yook, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760; (c) Liu, B.;
Tian, H. Chem. Commun. 2005, 3156; (d) Ros-Lis, J.; Marcos, M. D.; Martínez-
Máñez, R.; Rurack, K.; Soto, J. Angew. Chem., Int. Ed. 2005, 44, 4405; (e) Zheng,
H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.-G. Org. Lett. 2006, 8, 859; (f)
Lee, Y. J.; Seo, D.; Kwon, J. Y.; Son, G.; Park, M. S.; Choi, Y.-H.; Soh, J. H.; Lee, H.
N.; Lee, K. D.; Yoon, J. Tetrahedron 2006, 62, 12340; (g) Wu, D.; Huang, W.;
Daun, C.; Lin, Z.; Meng, Q. Inorg. Chem. 2007, 46, 1538; (h) Lee, M. H.; Cho, B.-K.;
Yoon, J.; Kim, J. S. Org. Lett. 2007, 9, 4515; (i) Yang, H.; Zhou, Z.; Huang, K.; Yu,
M.; Li, F.; Yi, T.; Huang, C. Org. Lett. 2007, 9, 4729; (j) Soh, J. H.; Swamy, K. M. K.;
Kim, S. K.; Kim, S.; Lee, S.-H.; Yoon, J. Tetrahedron Lett. 2007, 48, 5966; (k) Chen,
X.; Nam, S.-W.; Jou, M. J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Org. Lett. 2008, 10,
5235; (l) Lee, M. H.; Lee, S. W.; Kim, S. H.; Kang, C.; Kim, J. S. Org. Lett. 2009, 11,
2101; (m) Choi, M. G.; Kim, Y. H.; Namgoong, J. E.; Chang, S.-K. Chem. Commun.
2009, 3560; (n) Santra, M.; Ryu, D.; Chatterjee, A.; Ko, S.-K.; Shin, I.; Ahn, K. H.
Chem. Commun. 2009, 2115; (o) Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int.
Ed. 2008, 47, 8025; (p) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128,
14474; (q) Kwon, S. K.; Kim, H. N.; Rho, J. H.; Swamy, K. M. K.; Shanthakumar, S.
M.; Yoon, J. Bull. Korean Chem. Soc. 2009, 30, 719.
5. (a) Cao, H.; Heagy, M. D. J. Fluoresc. 2004, 14, 569. and reference therein; (b)
Yoon, J.; Czarnik, A. W. J. Am. Chem. Soc. 1992, 114, 5874; (c) Zhao, J.; Davidson,
M. G.; Mahon, M. F.; Kociok-Köhn, G.; James, T. D. J. Am Chem. Soc. 2004, 126,
16179; (d) Swamy, K. M. K.; Jang, Y. J.; Park, M. S.; Koh, H. S.; Lee, S. K.; Yoon, Y.
J.; Yoon, J. Tetrahedron Lett. 2005, 46, 3453; (e) Jang, Y. J.; Jun, J. H.; Swamy, K. M.
K.; Nakamura, K.; Koh, H. S.; Yoon, Y. J.; Yoon, J. Bull. Korean Chem. Soc. 2005, 26,
2041; (f) Zhang, X.; Chi, L.; Ji, S.; Wu, Y.; Song, P.; Han, K.; Guo, H.; James, T. D.;
Zhao, J. J. Am. Chem. Soc. 2009, 131, 17452.
6. (a) Kubo, Y.; Ishida, T.; Minami, T.; James, T. D. Chem. Lett. 2006, 35, 996; (b)
Swamy, K. M. K.; Lee, Y. J.; Lee, H. N.; Chun, J.; Kim, Y.; Kim, S.-J.; Yoon, J. J. Org.
Chem. 2006, 71, 8626; (c) Xu, Z.; Kim, S. K.; Han, S. J.; Lee, C.; Kociok-Kohn, G.;
James, T. D.; Yoon, J. Eur. J. Org. Chem. 2009, 3058.
7. (a) Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127. and
reference therein; (b) Swamy, K. M. K.; Ko, S.-K.; Kwon, S. K.; Lee, H. N.; Mao, C.;
Kim, J.-M.; Lee, K.-H.; Kim, J.; Shin, I.; Yoon, J. Chem. Commun. 2008, 5915; (c)
Xu, Z.; Pan, J.; Spring, D. R.; Cui, J.; Yoon, J. Tetrahedron 2010, 66, 1678.
8. Swamy, K. W. K.; Ko, S.-K.; Kwon, S.; Lee, H.; Mao, C.; Kim, J.-M.; Lee, K.-H.; Kim,
J.; Shin, I.; Yoon, J. Chem. Commun. 2008, 5915.
9. (a) Kim, H.; Lee, M.; Kim, H.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465.
and references therein; (b) Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K.-M.; Seo, M.-
S.; Nam, W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107; (c) Li, H.; Fan, J.; Wang,
J.; Tian, M.; Du, J.; Sun, S.; Sun, P.; Peng, X. Chem. Commun. 2009, 5904; (d) Jou,
M. J.; Chen, X.; Swamy, K. M. K.; Kim, H. N.; Kim, H.-J.; Lee, S.-g.; Yoon, J. Chem.
Commun. 2009, 7218; (e) Shiraishi, Y.; Sumiya, S.; Kohno, Y.; Hirai, T. J. Org.
Chem. 2008, 73, 8571; (f) Kou, S.; Lee, H. N.; Noort, D. v.; Swamy, K. M. K.; Kim,
S. H.; Soh, J. H.; Lee, K.-M.; Nam, S.-W.; Yoon, J.; Park, S. Angew. Chem., Int. Ed.
2008, 47, 872; (g) Chen, X.; Jou, M. J.; Lee, H.; Kou, S.; Lim, J.; Nam, S.-W.; Park,
S.; Kim, K.-M.; Yoon, J. Sens. Actuators, B: Chem. 2009, 137, 597.
10. Monoboronic acid-RB (1): Rhodamine ethylamine (4) (0.2 g, 0.4 mmol) was
dissolved in 20 mL of absolute ethanol. After 2-formylphenylboronic acid
(0.093 g, 0.62 mmol) was added, the reaction mixture was refluxed in an air
bath for 6 h. Then, the solution was cooled and concentrated to 10 mL and
allowed to stand at room temperature overnight. Ethanol was evaporated
completely under reduced pressure. The imine intermediate was dissolved in
10 mL of absolute methanol. Sodium borohydride was then added slowly with
stirring at room temperature for 4 h. The resulting solution was extracted with
methylene chloride (3 Â 100 mL), washed the organic layer with 50 mL of
Figure 6. Fluorescent changes (a) and colorimetric changes (b) of 2 (30 lM) with
Hg2+ (50 equiv) in CH3CN.
precedent rhodamine-based sensors bearing amide-linked binding
sites were studied in 100% organic solvent system or in the pres-
ence of small amount of aqueous system if they are reversible
probes.9 The UV absorption changes of 2 with Hg2+ in CH3CN are
also explained in the Supplementary data. On the other hand, in
the presence of buffer (pH 7.4) solution the selectivity for Hg2+
was enhanced dramatically (Supplementary Fig. 11). However,
the fluorescent enhancement process in this solvent system
[CH3CN–HEPES buffer (pH 7.4, 0.01 M) (9:1, v/v)] was also substan-
tially slowed down. The pH dependence of probe 2 was checked
(Supplementary Fig. 12) and the pKa of this probe was calculated
as around 2.4, which means that this probe has relatively a large
pH window between pH 6–9. Finally Figure 6 shows the fluores-
cent change and colorimetric change of 2 with Hg2+ in CH3CN.
The addition of Hg2+ induced a selective ‘Off–On’ fluorescent
change and distinct color change from colorless to dark pink.
In conclusion, rhodamine-boronic acid derivatives 1 and 2 were
synthesized as selective fluorescent and colorimetric sensors for
Hg2+ in aqueous solution. ‘Off–On’-type fluorescent and colorimet-
ric changes were observed for Hg2+, in which the spirolactam
(nonfluorescent) to ring-opened amide (fluorescent) process was
utilized. Most importantly, boronic acid group was utilized as a
binding unit for the Hg2+ selective fluorescent chemosensor for
the first time. The present study successfully demonstrated that
boronic acid group can serve as a unique and novel ligand for the
recognition of metal ions, which will be utilized for various recep-
tors in the future.
Acknowledgments
This work was supported by the Basic Science Research Pro-
gram (20090083065) through the National Research Foundation