4736
J.C.S. Woo et al. / Tetrahedron 66 (2010) 4730e4737
7.54e7.46 (m, 2H), 7.08 (d, J¼8.0 Hz, 2H), 5.25 (s, 2H), 1.79 (s, 6H). 13
C
Supplementary data
NMR (100 MHz, CDCl3, d): 164.0, 163.6, 160.5, 157.7, 144.2, 140.4, 137.6,
136.7, 129.9 (q, 1JC-F¼220.0 Hz), 129.5, 127.5, 127.4, 127.3, 126.4, 125.8
(q, 3JC-F¼4.0 Hz),125.4 (q, 2JC-F¼47.0 Hz),115.2,111.3,104.2, 70.2, 27.6.
HRMS (m/z): [M]þ calcd for C27H21F3O5, 482.1341; found, 482.1349. IR
Supplementary data associated with this article can be found in
(neat): 3003, 1921, 1784, 1746, 1510, 1292, 1177 cmꢀ1
.
References and notes
4.12. (S)-2,2-Dimethyl-5-(1-(4-((40-(trifluoromethyl)biphenyl-
3-yl)methoxy)phenyl)but-2-ynyl)-1,3-dioxane-4,6-dione 16
1. Bharate, S. B.; Nemmani, K. V. S.; Vishwakarma, R. A. Expert Opin. Ther. Pat. 2009,
19, 237 and references therein.
2. Akerman, M.; Houze, J.; Lin, D. C. H.; Liu, J.; Luo, J.; Medina, J. C.; Qiu, W.;
Reagan, J. D.; Sharma, R.; Shuttleworth, S. J.; Sun, Y.; Zhang, J.; Zhu, L. Int. Appl.
PCT, WO 2005086661, 2005.
Cinchonidine (853.8 mg, 2.9 mmol, 1.45 equiv) and tri-
3. Walker, S. D., Borths, C.; DiVirgilio, E.; Faul, M. M.; Huang, L.; Liu, P.; Woo, J. C. S.,
in preparation.
fluoroethanol (140 mL, 1.9 mmol, 0.95 equiv) were slurried in dry
THF (typically contain 30e150 ppm water, 3.5 mL) and then the
mixture was cooled to 0 ꢁC. Diethylzinc (2.4 mL, 1.0 M in toluene,
2.4 mmol, 1.2 equiv) was added dropwise via a syringe over 5 min
while the temperature was maintained below 20 ꢁC. The mixture
was aged at 20 ꢁC for 1 h to provide a colorless clear solution. The
mixture was cooled to 0 ꢁC and a solution of propynylmagnesium
chloride (4.8 mL, 0.5 M in THF, 2.4 mmol, 1.2 equiv) was added
dropwise via a syringe over 5 min while the temperature was
maintained below 20 ꢁC. The mixture was aged at 20 ꢁC for 1 h
and the substrate 19 (965 mg, 2 mmol, 1.0 equiv) was added as
a solid. After stirring at 22 ꢁC for 24 h, the mixture was cooled to
0 ꢁC, 1.0 M aqueous HCl (25 mL) was added followed by ethyl
acetate (60 mL), and the layers were separated. The aqueous
phase was extracted with ethyl acetate (2ꢂ20 mL). The combined
organic extracts were washed with brine (2ꢂ20 mL), dried over
Na2SO4, and concentrated under reduced pressure. The crude
product was crystallized from acetone/water (3:1) to afford the
desired product 16 (857 mg, 82% yield, >99 wt %, >99% ee) as
a white crystalline solid. Mp 139e142 ꢁC. Enantiomeric excess
was determined by HPLC analysis [Chiralpak AS-RH, 4.6ꢂ150 mm,
4. Partof thisworkhasbeencommunicated:Cui, S.;Walker, S. D.;Woo,J. C. S.;Borths,
C. J.; Mukherjee, H.; Chen, M. J.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 436.
5. Mukaiyama, T.; Takeda, T.; Osaki, M. Chem. Lett. 1977, 1165.
6. (a) Mukaiyama, T.; Hirako, Y.; Takeda, T. Chem. Lett. 1978, 461; (b) Mukaiyama,
T.; Takeda, T.; Fujimoto, K. Bull. Chem. Soc. Jpn. 1978, 51, 3368; (c) Takeda, T.;
HoshiKo, T.; Mukaiyama, T. Chem. Lett. 1981, 797; (d) Tietze, L. F.; Brand, S.;
Pfeiffer, T. Angew. Chem., Int. Ed. Engl. 1985, 24, 784; (e) Tietze, L. F.; Brand, S.;
Pfeiffer, T.; Antel, J.; Harms, K.; Sheldrick, G. M. J. Am. Chem. Soc. 1987, 109, 921;
(f) Trost, B. M.; Yang, B. W.; Miller, M. L. J. Am. Chem. Soc. 1989, 111, 6482; (g)
Brown, R. T.; Ford, M. J. Tetrahedron Lett. 1990, 31, 2033; (h) Li, W.; Thottathil, J.;
Murphy, M. Tetrahedron Lett. 1994, 35, 6591.
€
7. (a) Knopfel, T. F.; Boyall, D.; Carreira, E. M. Org. Lett. 2004, 6, 2281; For examples
of asymmetric conjugate alkynylation using other chiral auxiliaries, see: (b)
Elzner, S.; Maas, S.; Engel, S.; Kunz, H. Synthesis 2004, 13, 2153; (c) Fujimori, S.;
Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4964.
8. See Experimental Section.
9. (a) Intramolecular cyclization of alkynyl acids is a potential decomposition
pathway, see: Woo, J. C. S.; Walker, S. D.; Faul, M. M. Tetrahedron Lett. 2007, 48,
5679; (b) Thermal and base-mediated alkyne isomerization are also potential
side-reactions, see: Jones, E. R. H.; Mansfield, E. H.; Whiting, M. C. J. Chem. Soc.
1954, 3208; (c) For a review see: Iwai, I. Mechanisms of Molecular Rearrange-
ments 1969, 2, 72e116.
10. Kudo, N.; Perseghini, M.; Fu, G. C. Angew. Chem., Int. Ed 2006, 45, 1282 and
references therein.
11. Kanomata, N.;Maruyama, S.;Tomono, K.;Anada,S. TetrahedronLett. 2003, 44, 3599.
12. For the review of the Meldrum’s acids, see: (a) Chen, B. C. Heterocycles 1991, 32,
529 For recent examples of other conjugate additions using Meldrum’s acids
water (0.1% NH4Ac)/MeCN (58:42), 0.8 mL/min: tR (major)¼
25
13.3 min, tR (minor)¼18.5 min]. [
a
]
D
þ29.3 (c 0.53, acetone). 1H
derived acceptors as the substrates, see: (b) Watanabe, T.; Knopfel, T. F.; Car-
€
reira, E. M. Org. Lett. 2003, 5, 4557; (c) Fillion, E.; Wilsily, A. J. Am. Chem. Soc.
2006, 128, 2774; (d) Fillion, E.; Wilsily, A.; Liao, E.-T. Tetrahedron: Asymmetry
2006, 17, 2957; (e) Fillion, E.; Carret, S.; Mercier, L. G.; Trépanier, V. É Org. Lett.
2008, 10, 437; (f) Wilsily, A.; Fillion, E. Org. Lett. 2008, 10, 2801; (g) Dumas, A.
M.; Fillion, E. Org. Lett. 2009, 11, 1919; (h) Wilsily, A.; Lou, T.; Fillion, E. Synthesis
2009, 2066.
NMR (400 MHz, CDCl3,
d): 7.69 (s, 4H), 7.64 (s, 1H), 7.55 (d,
J¼8.0 Hz, 1H), 7.50e7.43 (m, 4H), 6.95 (d, J¼8.0 Hz, 2H), 5.12 (s,
2H), 4.85 (s, 1H), 3.83 (d, J¼4.0 Hz, 1H), 1.88 (d, J¼4.0 Hz, 3H), 1.71
(s, 3H), 1.62 (s, 3H). 13C NMR (100 MHz, CDCl3,
d): 164.1, 163.4,
2
158.2, 144.4, 140.2, 137.9, 130.2, 129.9, 129.5 (q, JC-F¼32.0 Hz),
€
13. Knopfel, T. F.; Carreira, E. M. J. Am. Chem. Soc. 2003, 125, 6054 and references
3
129.3, 127.5, 127.2, 126.9, 126.3, 125.7 (q, JC-F¼4.0 Hz), 124.3 (q,
therein.
1JC-F¼274.0 Hz), 114.7, 105.2, 81.2, 76.1, 69.9, 53.0, 36.1, 28.4, 27.8,
3.8. HRMS (m/z): [MþNa]þ calcd for C30H25F3O5, 545.1552; found,
545.1552. IR (neat): 3003, 2254, 1785, 1747, 1510, 1324, 1292,
€
14. Knopfel, T. F.;Zarotti,P.;Ichikawa,T.;Carreira,E.M.J.Am. Chem.Soc. 2005,127, 9682.
15. Fillion, E.; Zorzitto, A. K. J. Am. Chem. Soc. 2009, 131, 14608.
16. For recent reviews of asymmetric conjugate alkynylation, see: (a) Fujimori, S.;
€
Knopfel, T. F.; Zarotti, P.; Ichikawa, T.; Boyall, D.; Carreira, E. M. Bull. Chem. Soc.
1165 cmꢀ1
.
Jpn. 2007, 80, 1635; (b) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963
For examples of enantioselective conjugate alkynylation of enones, see: (c)
Chong, J. M.; Shen, L.; Taylor, N. J. J. Am. Chem. Soc. 2000, 122, 1822; (d) Kwak, Y.-
S.; Corey, E. J. Org. Lett. 2004, 6, 3385; (e) Yamashita, M.; Yamada, K.; Tomioka,
K. Org. Lett. 2005, 7, 2369; (f) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2005, 127,
3244; (g) Nishimura, T.; Guo, X.-X.; Uchiyama, N.; Katoh, T.; Hayashi, T. J. Am.
Chem. Soc. 2008, 130, 1576; (h) Nishimura, T.; Tokuji, S.; Sawano, T.; Hayashi, T.
Org. Lett. 2009, 11, 3222; (i) Larionov, O. V.; Corey, E. J. Org. Lett. 2010, 12, 300 For
an example of rhodium-catalyzed enantioselective conjugate alkynylation of
enals, see: (j) Nishimura, T.; Sawano, T.; Hayashi, T. Angew. Chem., Int. Ed. 2009,
48, 8057 For the example of rhodium-catalyzed asymmetric rearrangement of
alkynyl alkenyl carbinols: synthetic equivalent to asymmetric conjugate alky-
nylation of enones, see: (k) Nishimura, T.; Katoh, T.; Takatsu, K.; Shintani, R.;
Hayashi, T. J. Am. Chem. Soc. 2007, 129, 14158 For the example of organocatalytic
formal alkynylation of enals, see: (l) Nielsen, M.; Jacobsen, C. B.; Paixão, M. W.;
Holub, N.; Jørgensen, K. A. J. Am. Chem. Soc. 2009, 131, 10581.
4.13. Conversion of the adduct 16 to 1
Compound 16 (523 mg, 1.0 mmol) was dissolved in DMF
(2.2 mL) and water (0.2 mL) and heated to 90 ꢁC for 2 h. The re-
action mixture was then cooled to rt, diluted with ethyl acetate
(15 mL), and washed with brine (3ꢂ10 mL). The organic layer was
dried over MgSO4, filtered, and concentrated under reduced pres-
sure to afford the free acid of 1 as colorless oil. The crude product
was directly used in the next step.
To a stirred solution of the crude acid in dry acetonitrile (3.3 mL)
at rt was added a 5 N aqueous NaOH solution (0.2 mL, 1.0 equiv)
dropwise over 15 min (a voluminous white ppt formed). The
resulting mixture was stirred at rt overnight and filtered onto a fine
sintered glass filter funnel. The product cake was dried in a vacuum
oven at 70 ꢁC overnight to afford 1 (414 mg, 90%) as a white solid.
17. A variety of other chiral ligands and metals including copper, rhodium and
lithium were also evaluated and gave lower yield and enantioselectivity.
18. The method to generate chiral alkynylzinc reagents played a key role. Chiral
alkynylzinc reagents produced by transmetalation provided superior reactivity
to in situ generated chiral zinc alkynylides by ZnII/R3N.
19. For similar zinc species see: (a) Enders, D.; Zhu, J.; Raabe, G. Angew. Chem., Int. Ed.
1996, 35, 1725; (b) Enders, D.; Zhu, J.; Kramps, L. Liebigs Ann. 1997, 1101; (c) Dosa,
P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445; (d) Uchiyama, M.; Kameda, M.;
Mishima, O.; Yokoyama, N.; Koike, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc.
1998, 120, 4934; (e) Tan, L.; Chen, C.; Tillyer, R. D.; Grabowski, E. J. J.; Reider, P. J.
Angew. Chem., Int. Ed. 1999, 38, 711; (f) Chen, C.; Tan, L. Enantiomer 1999, 4, 599.
20. Zincate is depicted as a monomer for clarity. Preliminary NMR studies indicate
that several different zincate species exist in solution.
Acknowledgements
We are grateful to Dr. Tsang-Lin Hwang for NMR structural
work. We thank Maosheng Chen, Bo Shen, and Judith Ostovic for
the chiral HPLC analysis.
21. For full details, see Ref. 4.