pubs.acs.org/joc
Synthesis of Aminooxy and N-Alkylaminooxy
Amines for Use in Bioconjugation
Michael R. Carrasco,* Carolina I. Alvarado,
Scott T. Dashner, Amanda J. Wong, and Michael A. Wong
Department of Chemistry and Biochemistry,
Santa Clara University, 500 El Camino Real, Santa Clara,
California 95053-0270
FIGURE 1. Aminooxy and N-alkylaminooxy strategies for bio-
conjugation chemistry. In mildly acidic aqueous buffers, aminooxy
groups react with aldehydes and ketones to form oximes and
N-alkylaminooxy groups react with reducing sugars to form glyco-
conjugates.
Received June 2, 2010
proteins for imaging applications. N-Alkylaminooxy groups
have specific utility for glycosylation chemistry because they
react chemoselectively with native reducing sugars to form
glycoconjugates where the attached sugars maintain the
biologically relevant cyclic conformations.3 N-Alkylami-
nooxy strategies have been used for the glycosylation of
peptides,3,4 peptoids,5 proteins,6 carbohydrates,7 micro-
arrays,8 and small molecules of pharmaceutical interest.9
To effect these conjugation strategies, a wide array of special
amino acids, sugars, and linkers have been reported. Rather
than make different compounds for each context, however,
it would be valuable to have a small set of derivatives that
could be used to incorporate aminooxy and N-alkylami-
nooxy functionality into a wide array of desired molecules.
Because our own interest was in the synthesis of modified
peptoid oligomers, we envisioned making the amines 1-5.
These amines could be used in the synthesis of peptoids by
the submonomer method,10 and they could also be used in
the established bioconjugation methods for modification of
carboxyl groups in molecules such as peptides and proteins.
Removal of the Boc protection would then reveal the desired
aminooxy (from 1 and 2) or N-alkylaminooxy functiona-
lity (from 3-5). As a result, 1-5 would allow for easy
Five Boc-protected aminooxy and N-alkylaminooxy
amines have been synthesized in 60-95% overall yield
using a common synthetic strategy from readily available
two- and three-carbon Cbz-protected amino alcohols.
The amines can be linked to biomolecules via amide
formation and incorporated directly into peptoids via
submonomer synthesis. Subsequent deprotection of the
aminooxy and N-alkylaminooxy groups enables conjuga-
tion with desired target molecules via established chemo-
selective ligation methods. The range of derivatives
synthesized allows different distances to be established
between the conjugated molecules.
The reactions of aminooxy and N-alkylaminooxy groups
have proven exceedingly useful for bioconjugate chemistry.1
Aminooxy groups react chemoselectively with aldehydes and
ketones to form oximes in mild aqueous solutions, and with
appropriate additives the reactions can be performed at very
low concentrations (Figure 1).2 Oxime formation has been
the basis of conjugation chemistry as varied as dendrimer
synthesis; formation of peptide and protein assemblies;
glycosylation of peptides, proteins, and cells; and labeling
(3) Peri, F.; Dumy, P.; Mutter, M. Tetrahedron 1998, 54, 12269.
(4) (a) Carrasco, M. R.; Nguyen, M. J.; Burnell, D. R.; MacLaren, M. D.;
Hengel, S. M. Tetrahedron Lett. 2002, 43, 5727. (b) Carrasco, M. R.; Brown,
R. T. J. Org. Chem. 2003, 68, 8853.
(5) Seo, J.; Michaelian, N.; Owens, S. C.; Dashner, S. T.; Wong, A. J.;
Barron, A. E.; Carrasco, M. R. Org. Lett. 2009, 11, 5210.
(6) (a) Matsubara, N.; Oiwa, K.; Hohsaka, T.; Sadamoto, R.; Niikura,
K.; Fukuhara, N.; Takimoto, A.; Kondo, H.; Nishimura, S.-I. Chem.;Eur.
ꢀ
J. 2005, 11, 6974. (b) Leung, C.; Chibba, A.; Gomez-Biagi, R. F.; Nitz, M.
Carbohydr. Res. 2009, 344, 570.
(7) (a) Peri, F.; Deutman, A.; La Ferla, B.; Nicotra, F. Chem. Commun.
ꢀ
ꢁ
2002, 1504. (b) Peri, F.; Jimenez-Barbero, J.; Garcıa-Aparicio, V.; Tvaroska,
I.; Nicotra, F. Chem.;Eur. J. 2004, 10, 1433.
(8) (a) Bohorov, O.; Andersson-Sand, H.; Hoffmann, J.; Blixt, O. Glyco-
(1) (a) Peri, F.; Nicotra, F. Chem. Commun. 2004, 623. (b) Zatsepin, T. S.;
Stetsenko, D. A.; Gait, M. J.; Oretskaya, T. S. Bioconjugate Chem. 2005, 16,
471. (c) Langenhan, J. M.; Griffith, B. R.; Thorson, J. S. J. Nat. Prod. 2005,
68, 1696. (d) Langenhan, J. M.; Thorson, J. S. Curr. Org. Synth. 2005, 2, 59.
(e) Lees, A.; Sen, G.; LopezAcosta, A. Vaccine 2006, 24, 716. (f) Heredia,
K. L.; Maynard, H. D. Org. Biomol. Chem. 2007, 5, 45. (g) Nicotra, F.;
Cipolla, L.; Peri, F.; La Ferla, B.; Redaelli, C. In Advances in Carbohydrate
Chemistry and Biochemistry; Derek, H., Ed.; Academic Press: New York,
ꢀ
biology 2006, 16, 21C. (b) Clo, E.; Blixt, O.; Jensen, K. J. Eur. J. Org. Chem.
2010, 540.
(9) (a) Langenhan, J. M.; Peters, N. R.; Guzei, I. A.; Hoffmann, F. M.;
Thorson, J. S. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 12305. (b) Ahmed, A.;
Peters, N. R.; Fitzgerald, M. K.; Watson, J. A., Jr.; Hoffmann, F. M.;
Thorson, J. S. J. Am. Chem. Soc. 2006, 128, 14224. (c) Griffith, B. R.; Krepel,
C.; Fu, X.; Blanchard, S.; Ahmed, A.; Edmiston, C. E.; Thorson, J. S. J. Am.
Chem. Soc. 2007, 129, 8150. (d) Langenhan, J. M.; Engle, J. M.; Slevin, L. K.;
Fay, L. R.; Lucker, R. W.; Smith, K. R.; Endo, M. M. Bioorg. Med. Chem.
Lett. 2008, 18, 670. (e) Goff, R. D.; Thorson, J. S. Org. Lett. 2009, 11, 461.
(10) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J. Am.
Chem. Soc. 1992, 114, 10646.
€
2007; Vol. 61, p 353. (h) Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke,
D. J.; Kade, M. J.; Hawker, C. J. Chem. Rev. 2009, 109, 5620. (i) Kalia, J.;
Raines, R. T. Curr. Org. Chem. 2010, 14, 138.
(2) (a) Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem., Int.
ꢀ
Ed. 2006, 45, 7581. (b) Thygesen, M. B.; Munch, H.; Sauer, J.; Clo, E.;
Jørgensen, M. R.; Hindsgaul, O.; Jensen, K. J. J. Org. Chem. 2010, 75, 1752.
DOI: 10.1021/jo101066c
r
Published on Web 07/15/2010
J. Org. Chem. 2010, 75, 5757–5759 5757
2010 American Chemical Society