4758
S.E. Denmark et al. / Tetrahedron 66 (2010) 4745–4759
Agents Chemother. 1992, 36, 1648–1657; (b) Traxler, P. U.S. Patent 4,374,129,
1983.
the additional steric encumbrance. Therefore, the following se-
quence was employed: (1) the C(2)-hydroxyl group was protected
first, through an in situ formation of a chlorocarbonate 87 and
trapping with 2-(trimethylsilyl)ethanol, (2) the benzyl groups were
removed under hydrogenolysis conditions, and (3) the phenolic
hydroxyl groups were protected using TEOC-Cl in the presence of i-
Pr2NEt. This three-step sequence proceeded in 88% overall yield
compared to the 38% yield for the three-step sequence for the SEM
protection of 55.
Finally, the successful global deprotection required extensive
optimization for the cleavage of all the TEOC groups. The C(2)-TEOC
was the most difficult to remove of all the silicon protecting groups
in 92. Manipulation of the fluoride concentration, ratio of HF to Et3N,
changing the solvent from CH3CN to DMSO, and raising the tem-
perature from 40 ꢁC to 60 ꢁC were all required to effect complete
desilylation and provide excellent yield (89%) of the natural product.
4. For L-687, 781 see: (a) VanMiddlesworth, F.; Olmstead, M. N.; Schmatz, D.;
Bartizal, K.; Fromling, R.; Bills, G.; Nollstadt, K.; Honeycutt, S.; Zweerink, M.;
Garrity, G.; Wilson, K. J. Antibiot. 1991, 44, 45–51; (b) Kaneto, R.; Chiba, H.;
Agematu, H.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R. J. Antibiot.
1993, 46, 247–250; For Mer-WF3010 see: (c) Chiba, H.; Kaneto, R.; Agematu, H.;
Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R. J. Antibiot. 1993, 46, 356–
358; For BU-4794F see: (d) Aoki, M.; Andoh, T.; Ueki, T.; Masuyoshi, S.; Suga-
wara, K.; Oki, T. J. Antibiot. 1993, 46, 952–960; For Saricandin see: (e) Chen, R.
H.; Tennant, S.; Frost, D.; O’Beirne, M. J.; Karwowski, J. P.; Humphrey, P. E.;
Malmberg, L. H.; Choi, W.; Brandt, K. D.; West, P.; Kadam, S. K.; Clement, J. J.;
McAlpine, J. B. J. Antibiot. 1996, 49, 596–598; For chaetiacandin see: (f) Komori,
T.; Itoh, Y. J. Antibiot. 1985, 38, 544–546; (g) Komori, T.; Yamashita, M.; Tsurumi,
Y.; Kohsaka, M. J. Antibiot. 1985, 38, 455–459; For F-10748 A1, A2, B1,B2, C1, C2,
D1, and D2 see: (h) Ohyama, T.; Iwadate-Kurihara, Y.; Hosoya, T.; Ishikawa, T.;
Miyakoshi, S.; Hamano, K.; Inukai, M. J. Antibiot. 2002, 55, 758–763; (i) Traxler,
P. U.S. Patent 4,251,517, 1981.
5. For arylglycoside synthesis see: (a) Danishefsky, S.; Phillips, G.; Ciufolini, M.
Carbohydr. Res. 1987, 171, 317–327; (b) Balachari, D.; O’Doherty, G. A. Org. Lett.
2000, 2, 863–866; (c) Balachari, D.; O’Doherty, G. A. Org. Lett. 2000, 2, 4033–
4036; (d) Ahmed, M. M.; O’Doherty, G. A. Tetrahedron Lett. 2005, 46, 4151–4155;
(e) McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117,
6605–6606; (f) Schmidt, R. R.; Frick, W. Tetrahedron 1988, 44, 7163–7169; (g)
Barrett, A. G. M.; Pen˜a, M.; Willardsen, J. A. J. Chem. Soc., Chem. Commun. 1995,
1145–1146; (h) Barrett, A. G. M.; Pen˜a, M.; Willardsen, J. A. J. Chem. Soc., Chem.
Commun. 1995, 1147–1148; (i) Rosenblum, S. B.; Bihovsky, R. J. Am. Chem. Soc.
1990, 112, 2746–2748; (j) Czernecki, S.; Perlat, M.-C. J. Org. Chem. 1991, 56,
6289–6292; (k) Parker, K. A.; Georges, A. T. Org. Lett. 2000, 2, 497–499; (l)
Friesen, R. W.; Sturnio, C. F. J. Org. Chem. 1990, 55, 2572–2574; (m) Friesen, R.
W.; Sturnio, C. F. J. Org. Chem. 1990, 55, 5808–5810; (n) Friesen, R. W.; Sturnio,
C. F.; Daljeet, A. K.; Kolaczewska, A. J. Org. Chem. 1991, 56 1944–1947; (o) Du-
bois, E.; Beau, J.-M. J. Chem. Soc., Chem. Commun. 1990, 1191–1192; (p) Dubois,
E.; Beau, J.-M. Tetrahedron Lett. 1990, 36, 5165–5168; (q) Dubois, E.; Beau, J.-M.
Carbohydr. Res. 1992, 223, 157–167; For the total synthesis of papulacandin D
see: (r) Barrett, A. G. M.; Pen˜a, M.; Willardsen, J. A. J. Org. Chem. 1996, 61, 1082–
1100; (s) Previous communication see: Denmark, S. E.; Regens, C. S.; Kobayashi,
T. J. Am. Chem. Soc. 2007, 129, 2774–2776; (t) Kobayashi, T.; Regens, C. S.;
Denmark, S. E. J. Synth. Org. Chem. Jpn 2008, 66, 616–628; (u) Hitchcock, S. A.;
Chafig, H.; Sanchez-Martinez, C.; Esteban, A. R. U.S. Patent 6,069,238 May 30, 2000.
6. Hector, R. F. Clin. Microbiol. Rev. 1993, 1–21.
4. Conclusion
The total synthesis of (þ)-papulacandin D has been accom-
plished in a convergent approach (31 steps overall, 9.2%, over
80 mg) from commercially available triacetoxyglucal and geraniol.
The synthetic strategy breaks the molecule into two nearly equal
subunits, the C-spirocyclic arylglycoside 90 and polyunsaturated
fatty acid side-chain 2. The key significant features of the synthetic
strategy are (1) the palladium-catalyzed, organosilanolate-based,
cross-coupling of a protected glucal silanol and (2) a catalytic
enantioselective allylation reaction using chiral bisphosphoramide
(R,R)-65 for the construction of the C(700) stereogenic center. Fur-
ther extension of organosilanolate-based, cross-coupling reactions
for the synthesis of other complex molecules is underway.
7. (a) Denmark, S. E.; Sweis, R. F. In Metal-Catalyzed Cross-Coupling Reactions; de
Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 163–
216; (b) Denmark, S. E.; Yang, S.-M. In Strategies and Tactics in Organic Synthesis;
Harmata, M. A., Ed.; Elsevier: Amsterdam, 2005; Vol. 6, Chapter 4; (c) Denmark,
S. E.; Baird, J. D. Chem.dEur. J. 2006, 12, 4954–4963; (d) Denmark, S. E.; Regens,
C. S. Acc. Chem. Res. 2008, 41, 1486–1499; (e) Denmark, S. E. J. Org. Chem. 2009,
74, 2915–2927.
Acknowledgements
Funding was provided by the National Institutes of Health
(Grant R01 GM63167). C.S.R. thanks Eli Lilly Research Laboratories
and Johnson & Johnson PRI for graduate fellowships. We are also
grateful to Prof. A.G.M. Barrett for providing spectra for synthetic
(þ)-papulacandin D.
8. Denmark, S. E.; Neuville, L. Org. Lett. 2000, 2, 3221–3224.
9. (a) Swindell, C. S.; Fan, W. J. Org. Chem. 1996, 61, 1109–1118; (b) Niclaou, K. C.;
Ramanjulu, J. M.; Natarajan, S.; Brase, S.; Li, H.; Boddy, C. N. C.; Rubsam, F. Chem.
Commun. 1997, 1899–1900; (c) See Supplementary data for the synthesis of 9.
10. Ferrier, R. J.; Furneaux, R. H. Carbohydr. Res. 1976, 52, 63–68.
Supplementary data
11. (a) Fernandez-Mayoralas, A.; Marra, A.; Trumtel, M.; Veyrieres, A.; Siney, P.
Tetrahedron Lett. 1989, 30, 2537–2540; (b) Fernandez-Mayoralas, A.; Marra, A.;
Trumtel, M.; Veyrieres, A.; Siney, P. Carbohydr. Res. 1989, 188, 81–95; (c) Ja¨kel, C.;
Do¨tz, K. H. J. Organomet. Chem. 2001, 624, 172–185. Although the glycal actonide
can be prepared from glucose via triacetyl glycal, but is low yielding; (d) Fraser-
Reid, B.; Walker, D. L.; Tam, S. Y.-K.; Holder, N. L. Can. J. Chem. 1973, 51, 3950–
3954; (e) Franck, R. W.; John, T. V. J. Org. Chem. 1983, 48, 3269–3276.
12. Direct formation of silanol from metalation of glucals and trapping with
hexamethylcyclotrisiloxane the yields and scale were irreproducible. (a) Butler,
C. R.; Denmark, S. E. e-EROS Encycl. Reagents Org. Synth. 2007, doi:10.1002/
047084289X.rn00785
Detailed procedures and full characterization of all synthetic
intermediates and products are provided, along with spectral
comparison of natural and synthetic (þ)-papulacandin D (215
pages). Supplementary data associated with this article can be
data include MOL files and InChiKeys of the most important com-
pounds described in this article.
13. Lee, M.; Ko, S.; Chang, S. J. Am. Chem. Soc. 2000, 122, 12011–12012.
14. For the preparation of protected aromatic iodides see Supplementary data.
15. (a) Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 4871–4874; (b) Trost, B.
M.; Caldwell, C. D. Tetrahedron Lett. 1981, 22, 4999–5002.
References and notes
16. Roth, W.; Pigman, W. Methods Carbohydr. Chem. 1963, 2, 405–408.
17. It was found through deuterium incorporation experiments 1.0–1.5 equiv t-BuLi
was sufficient to effect the lithiation at C(1), see Supplementary data.
18. Lee, Y.; Seomoon, D.; Kim, S.; Han, H.; Chang, S.; Lee, P. J. Org. Chem. 2004, 69,
1741–1743.
19. Attempts to trap C(1)-lithio 41 with dichlorodimethylsilane, followed by hy-
drolysis of the corresponding chlorosilane, under pH 5.0 buffered aqueous
conditions, gave disiloxane as the sole product.
1. Isolation: (a) Traxler, P.; Gruner, J.; Auden, J. A. J. Antibiot. 1977, 30, 289–296;
Structural characterization: (b) Traxler, P.; Frittz, H.; Richter, W. J. Helv. Chim.
Acta 1977, 60, 578–584; (c) Traxler, P.; Fritz, H.; Fuhrer, H.; Richter, W. J. Antibiot.
1980, 33, 967–978; (d) Traxler, P.; Gruner, J.; Nuesch, J. U.S. Patent 4,278,665,
1981.
2. (a) Pe´rez, P.; Varona, R.; Garcia-Acha, I.; Dura´n, A. FEBS Lett. 1981, 129, 249–252;
´
´
(b) Varona, R.; Perez, P.; Duran, A. FEMS Microbiol. Lett. 1983, 20, 243–247; (c)
Baguley, B. C.; Rommele, G.; Gruner, J.; Wehrli, W. Eur. J. Biochem. 1979, 97, 345–
351; (d) Murgui, A.; Victoria Elorza, M.; Sentandreu, R. Biochem. Biophys. Acta
1985, 841, 215–222; (e) Pe´rez, P.; Garcia-Acha, I.; Dura´n, A. J. Gen. Microbiol.
1983, 129, 245–250; (f) Kopecka, M. Folia Microbiol. 1984, 29, 441–449; (g)
Debono, M.; Gordee, R. S. Annu. Rev. Microbiol. 1994, 48, 471–497; (h) Schmatz,
D. M.; Romancheck, M. A.; Pittarelli, L. A.; Schwartz, R. E.; Fromtling, R. A.;
Nollstadt, K. H.; Vanmiddlesworth, F. L.; Wilson, K. E.; Turner, M. J. Proc. Natl.
Acad. Sci. U.S.A. 1990, 87, 5950–5954; (i) Traxler, P.; Tosch, W.; Zak, O. J. Antibiot.
1987, 40, 1146–1164; (j) Schmatz, D. M. U.S. Patent 5,089,478, 1992.
20. This type of nonoxidative spiroketalization was observed with 57 in the
presence of acidic media.
21. The 82% yield was consistently reproducible on both 1.0–5.0 mmol scales.
22. (a) Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661–6666; (b)
Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380–
1419; (c) For a recent review on DMDO see: Adam, W.; Saha-Mo¨ller, C. R.; Zhao,
C.-G. Org. React. 2002, 61, 219–516.
23. TMS/ethanol: (a) Mancini, M. L.; Honek, J. F. Tetrahedron Lett. 1982, 23, 3249–
3250; SEM-Cl: (b) Lipshutz, B. H.; Pegram, J. J. Tetrahedron Lett. 1980, 21, 3343–
3346; (c) Lipshutz, B. H.; Moretti, R.; Crow, R. Tetrahedron Lett. 1989, 30, 15–18.
3. (a) Bartizal, K.; Abruzzo, G.; Trainor, C.; Krupa, D.; Nollstadt, K.; Schmartz, D.;
Schwartz, R.; Hammond, M.; Balkovec, J.; Vanmiddlesworth, F. Antimicrob.