but also on the formation of the charge transfer complex.
From the results obtained in the present study, photorespons-
ive polythiophene derivatives are promising materials in view
of the reversible control of electrical properties by light.
References
1
2
J. Roncali, Chem. Rev., 1992, 92, 711.
Handbook of Conducting Polymers, ed. T. A. Skotheim, Dekker:
New York, 1986, Vol. 1 and 2.
3
4
R. D. McCullough and S. P. Williams. J. Am. Chem. Soc., 1993,
115, 11608.
R. D. McCullough, R. D. Lowe, M. Jayaraman and
D. L. Anderson, J. Org. Chem., 1993, 58, 904.
T.-A. Chen and R. D. Rieke, J. Am. Chem. Soc., 1992, 114, 10087.
C. A. Sandstedt, R. D. Rieke and C. J. Eckhardt, Chem. Mater.,
1995, 7, 1057.
K. Faid, M. Frechette, M. Ranger, L. Mazerolle, I. Levesque,
M. Leclerc, T.-A. Chen and R. D. Rieke, Chem. Mater., 1995,
7, 1390.
5
6
7
Fig. 6 Absorption spectra of a thin film of PT6 (A), before irradiation;
(B), after irradiation at 366 nm; (C), after annealing at 70 °C for 3 h;
(D), after annealing at 70 °C for 6 h. The conductivity of PT6 was
measured in the dark at room temperature. The thin film of PT6 was
annealed at 70 °C for 10 h before photoirradiation.
8
9
G. H. Brown, Photochromism, Techniques of Chemistry, Vol. III,
Wiley Interscience, 1971.
M. Irie, M. Miyatake, K. Uchida and T. Eriguchi, J. Am. Chem.
Soc., 1994, 116, 9894.
10 T. Saika, M. Irie and T. Shimidzu, J. Chem. Soc., Chem. Commun.,
1994, 2123.
11 K. Uchida and M. Irie, J. Am. Chem. Soc., 1993, 115, 6442.
12 K. Sayo and M. Irie, J. Phys. Chem., 1992, 96, 7671.
13 G. M. Tsivgoulis and J.-M. Lehn, Angew. Chem., Int. Ed. Engl.,
1995, 34, 1119.
14 A. Yassar, C. Moustrou, H. Korri-Youssoufi, A. Samat,
R. Gugliemetti and F. Garnier, Macromolecules, 1995, 28, 4548.
15 I. Levesque and M. Leclerc, Macromolecules, 1997, 30, 4347.
16 L. M. Goldenberg, M. R. Bryce, S. Wegener, M. C. Petty,
J. P. Cresswell, I. K. Lednev, R. E. Hester and J. N. Moore,
J. Mater. Chem., 1997, 7, 2033.
17 S. A. Chen and C. S. Liao, Synth. Met., 1993, 55–57, 4950.
18 S. A. Chen and C. S. Liao, Makromol. Chem. Rapid Commun.,
1993, 14, 69.
19 T. Ikeda, T. Miyamoto, S. Kurihara, M. Tsukada and S. Tazuke,
Mol. Cryst. Liq. Cryst., 1991, 182B, 357.
20 A. Hassner and V. Alexanian, Tetrahedron Lett., 1989, 19, 307.
21 K. Yoshino, S. Hayashi and R. Sugimoto, Jpn. J. Appl. Phys.,
1984, 23, L899.
22 T. Yamamoto, K. Sanechika and A. Yamamoto, Bull. Chem. Soc.
Jpn., 1983, 56, 1497, 1503.
23 T. Yamamoto, J. Synth. Org. Chem. Jpn., 1995, 53, 77.
24 M. R. Anderson, D. Selse, H. Jarvinen, T. Hjertberg, O. Inganas,
O. Wennerstorm and J. E. Osterholm, Macromolecules, 1994, 27,
6503.
where n is the number of carriers, e is the charge of carriers,
and m is the mobility of carriers. PT6 is a very amorphous
material as discussed above, and in such amorphous materials,
hopping of carriers plays an important role in the conduction
mechanism. In PT6, since the conducting units of polymer
chains are distributed randomly, it is assumed that the hopping
of carriers occurs partially along the polymer backbone. It has
been reported that the solid-state UV–VIS absorption spectra
of regiochemically random polymers (H–T, >50%) show the
maximum absorption around 500 nm for the p–p* transition
of p-conjugated units, while those of regioregular polymers
(H–T, >98%) show a much longer maximum absorption
wavelength around 550 nm.34,35 In this study, the change in
absorbance around 530 nm, which might be assigned to the
p–p* transition of the conducting units with enhanced regu-
larity of polymer backbone and/or to the charge transfer
complex, was observed before and after photoirradiation. On
irradiation the conductivity increased with a concomitant
increase in absorbance around 530 nm. This result means the
isomerization of the azobenzene moieties affects both the
number and the mobility of carriers.
25 R. M. S. Maior, K. Hinkelmann, H. Eckent and F. Wudl,
Macromolecules, 1990, 23, 1268.
26 M. Sato and H. Morii, Macromolecules, 1991, 24, 1196.
27 M. Leclerc, M. F. Diaz and G. Wegner, Makromol. Chem., 1989,
190, 3105.
28 T. Yamamoto, D. Komarudin, M. Arai, B. L. Lee, H. Suganuma,
N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, T. Fukuda and
H. Matsuda, J. Am. Chem. Soc., 1998, 120, 2047.
29 R. D. McCullough, R. D. Lowe, M. Jayaraman and
D. L. Anderson, J. Org. Chem., 1993, 58, 904.
30 G. Barbarella, A. Bongini and M. Zambianchi, Macromolecules,
1994, 27, 3039.
31 Y. Miyazaki and T. Yamamoto, Synth. Met., 1994, 64, 69.
32 P. L. Burtlett and K. Birkin, Synth. Met., 1993, 61, 15.
33 T. M. Sweger and M. J. Marsella, Adv. Mater., 1994, 6, 595.
34 T.-A. Chen, X. Wu and R. D. Rieke, J. Am. Chem. Soc., 1995,
117, 233.
35 R. D. McCullough and S. P. Williams, J. Am. Chem. Soc., 1993,
115, 4910.
Conclusions
We propose here two hypotheses to interpret the observed
phenomenon. One is the conformational change of the polymer
backbone. The properties of cis-azobenzene are very different
from those of trans-azobenzene, e.g., the polarity of cis-
azobenzene is much higher than that of trans-azobenzene.
When properties of a polymer matrix such as density are
changed due to trans–cis photoisomerization, the coplanarity
of the thiophene rings may be increased. The other hypothesis
is the formation of a charge transfer complex. It may be
possible that a charge transfer complex is formed between cis-
azobenzene as an electron-withdrawing group and the thio-
phene ring as an electron-donating group, which results in a
similar effect to doping and enhances the conductivity with an
increase in the concentration of the cis form. Although it is
not clear at the present stage of research which hypothesis is
correct, our focus is not only on the conformational change
Paper 9/02596K
J. Mater. Chem., 1999, 9, 2215–2219
2219