378
M. Formica et al.
Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192–202. (f) Beer,
P.D.; Gale, P.A. Angew. Chem. Int. Ed. 2001, 40, 486–516.
(g) Schmidtchen, F.P.; Berger, M. Chem. Rev. 1997, 97,
1609–1646.
to DMSO to avoid the non-uniform absorption of water
from the atmosphere by anhydrous DMSO during the
titration. In a typical experiment, a 5 £ 1022 mol dm23
solution of the anion was added in 0.1 eq at a time to a
1 £ 1022 mol dm23 solution of the ligand directly in the
NMR tube; the tube was then kept for 5 min at a
temperature of 298 K before starting the acquisition of the
spectrum. The anions tested were added as their
tetrabutylammonium salts. The monitoring of the shift of
the signals in the ligand spectra (see Results and
discussion) permitted evaluation of the association
constants of ligand–anion using the HYPNMR computer
program (18).
(2) Amendola, V.; Fabbrizzi, L. Chem. Commun. 2009,
513–531.
(3) (a) Miranda, C.; Escarti, F.; Lamarque, L.; Yunta, M.J.R.;
Navarro, P.; Garcia-Espan˜a, E.; Jimeno, M.L. J. Am. Chem.
Soc. 2004, 126, 823–833. (b) Lamarque, L.; Navarro, P.;
Miranda, C.; Aran, V.J.; Ochoa, C.; Escarti, F.; Garcia-
Espan˜a, E.; Latorre, J.; Luis, S.V.; Miravet, J.F. J. Am.
Chem. Soc. 2001, 123, 10560–10570.
(4) (a) Kang, S.O.; Begum, R.A.; Bowman-James, K. Angew.
Chem. Int. Ed. 2006, 45, 7882–7894. (b) Esteban-Gomez,
D.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Org. Biomol.
Chem. 2005, 3, 1495–1500. (c) Lowe, A.J.; Dyson, G.A.;
Pfeffer, F.M. Org. Biomol. Chem. 2007, 5, 1343–1346. (d)
Fluorescence spectra were recorded at 298 K with a
Varian Cary Eclipse spectrofluorimeter. UV–vis absorption
spectra were recorded at 298 K with a Varian Cary-100
spectrophotometer equipped with a temperature control unit.
Theinteraction ofanionswith ligandsL1and L2 was studied
in similar conditions of the NMR titration experiments using
CH3CN or DMSO-d6–0.5% water mixture as the solvent;
the solution containing the guest anion (F2, Cl2, Br2, I2 or
AcO2) up to 5 equivalents with respect to the ligand was
added to the solution containing L1 ([L1] ¼ 1.5 £ 105 M).
At least three sets of spectrophotometric titration curves for
each G/L system were performed. All sets of curves were
treated either as single sets or as separate entities, for each
system; no significant variations were found in the values of
the determined constants. The HYPERQUAD computer
program was used to process the spectrophotometric data
(18b).
¨
Suhs, T.; Konig, B. Chem. Eur. J. 2006, 12, 8150–8157. (e)
`
Andres, A.; Arago, J.; Bencini, A.; Bianchi, A.; Domenech,
˜a, E.; Paoletti, P.; Ramirez, J.A.
Inorg. Chem. 1993, 32, 3418–3424.
A.; Fusi, V.; Garcia-Espan
(5) (a) Kang, S.O.; Hossain, M.A.; Bowman-James, K. Coord.
Chem. Rev. 2006, 250, 3038–3052. (b) Bowman-James, K.
Acc. Chem. Res. 2005, 38, 671–678. (c) Amendola, V.;
Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem.
Res. 2006, 39, 343–353. (d) Gale, P.; Quesada, R. Coord.
Chem. Rev. 2006, 250, 3219–3244. (e)Kim, T.H.;Choi, M.S.;
Sohn, B.-H.; Park, S.-Y. Chem. Commun. 2008, 2364–2366.
(f) Lowe, A.J.; Dyson, G.A.; Pfeffer, F.M. Eur. J. Org. Chem.
2008, 1559–1567. (g) Amendola, V.; Baiocchi, D.M.;
Fabbrizzi, L.; Mosca, L. Chem. Eur. J. 2008, 14, 9683–9696.
(6) Formica, M.; Fusi, V.; Macedi, E.; Paoli, P.; Piersanti, G.;
Rossi, P.; Zappia, G.; Orlando, P. New J. Chem. 2008, 32,
1204–1214.
(7) For selected reviews of (thio)urea-based organocatalysis,
see: (a) Zhang, Z.; Schreiner, P.R. Chem. Soc. Rev. 2009,
38, 1187–1198. (b) Connon, S.J. Chem. Commun. 2008,
2499–2510. (c) Doyle, A.G.; Jacobsen, E.N. Chem. Rev.
2007, 107, 5713–5743. (d) Taylor, M.S.; Jacobsen, E.N.
Angew. Chem., Int. Ed. 2006, 45, 1520–1543. (e)
Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299–4306.
(f) Schreiner, P.R. Chem. Soc. Rev. 2003, 32, 289–296.
(8) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606–631.
(9) (a) Carpino, L.A.; Beyermann, M.; Wenschuh, H.; Bienert,
M. Acc. Chem. Res. 1996, 29, 268–274 and reference
therein. (b) Jedrzejczak, M.; Motie, R.E.; Satchell, D.P.N.;
Satchell, R.S.; Wassef, W.N. J. Chem. Soc., Perkin Trans. 2
1994, 1471–1479.
The fluorescence quantum yields (Ff) were determined
by comparing the integrated fluorescence spectra of
the sample with 2,20-biphenol in acetonitrile (Ff ¼ 0.29)
(17).
Supporting Information
19F NMR titrations of L1 with AcO2 or F2 in DMSO-d6,
1H NMR titration of L1 with F2 in CD3CN and 13C NMR
spectrum of L1 are available online.
(10) White, J.M.; Rao Tunoori, A.; Turunen, B.J.; Georg, G.I.
J. Org. Chem. 2004, 69, 2573–2576.
Acknowledgement
´
(11) Perez-Casa, C.; Yatsimirsky, A.K. J. Org. Chem. 2008, 73,
2275–2284.
The authors thank the Italian Ministero dell’Istruzione dell’U-
(12) Shenderovich, I.G.; Tolstoy, P.M.; Golubev, N.S.; Smirnov,
S.N.; Denisov, G.S.; Limbach, H.H. J. Am. Chem. Soc.
2003, 125, 11710–11720.
`
niversita e della Ricerca (MIUR) PRIN2007 for the financial
support.
(13) Boiocchi, M.; Del Boca, L.; Esteban-Gomez, D.; Fabbrizzi,
L.; Licchelli, M.; Monzani, E. Chem. Eur. J. 2005, 11,
3097–3104.
References
(14) (a) Formica, M.; Fusi, V.; Giorgi, L.; Guerri, A.; Lucarini,
S.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P.; Tarzia,
G.; Zappia, G. New J. Chem. 2003, 27, 1575–1583. (b)
Ambrosi, G.; Dapporto, P.; Formica, M.; Fusi, V.; Giorgi,
L.; Guerri, A.; Lucarini, S.; Micheloni, M.; Paoli, P.;
Pontellini, R.; Rossi, P.; Zappia, G. New J. Chem. 2004, 28,
1359–1367. (c) Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi,
(1) (a) Bianchi, A.; Bowman-James, K.; Garcia-Espan˜a, E.
Supramolecular Chemistry of Anions; Wiley-VCH:
New York, 1997. (b) Sessler, J.L.; Gale, P.A.; Cho, W.S.
Anion Receptor Chemistry; Royal Society of Chemistry:
Cambridge, 2006. For recent reviews, see: (c) Caltagirone,
C.; Gale, P.A. Chem. Soc. Rev. 2009, 38, 520–563. (d) Gale,
P.A. Acc. Chem. Res. 2006, 39, 465–475. (e) Suksai, C.;