10.1002/cctc.201800919
ChemCatChem
FULL PAPER
isobutyraldehyde (0.6 or 1.2 mmol). The vial was closed and was either
stirred or shaken at room temperature or immersed in a preheated oil bath
and stirred magnetically. After the given time the mixture was diluted to 3
mL with CHCl3. The soluble catalysts were extracted with 1 mL saturated
NH4Cl aqueous solution, the aqueous phase was washed twice with 2 mL
CHCl3, the unified organic phases were dried over MgSO4 and analysed.
The suspensions obtained using heterogeneous catalysts were diluted to
3 mL with CHCl3 and the catalyst was centrifuged. The solid was washed
twice with 1 mL CHCl3 and the obtained unified organic solution was
treated as described for homogeneous reactions.
Products were identified by mass spectrometric analysis using Agilent
Techn. 6890N GC - 5973 MSD and a 30 m DB1-MS UI capillary column.
Conversions and enantiomeric excesses (ee) were determined by gas-
chromatographic analysis using Agilent 6890N GC-FID equipped with a 30
m Cyclosil-B chiral capillary column (Agilent, J&W) and n-decane as
internal standard. Products were isolated by flash chromatography on
silica gel 60, 40-63 μm, using hexane isomers/ethyl acetate 2/1 (3a) or 4/1
(3b) mixtures as eluent. The purity of the fractions were checked by thin-
layer chromatography on Kieselgel-G (Merck Si 254 F) layers. NMR
spectra of the purified products were recorded on a Bruker Ascend 500
instrument at 500 (1H NMR) or 125 MHz (13C NMR) using CDCl3 as solvent
(see the Supporting Information).
d) A. F. Trindade, P. M. P. Gois, C. A. M. Afonso, Chem. Rev. 2009, 109,
418-514. e) Gy. Szőllősi, Catal. Sci. Technol. 2018, 8, 389-422.
J. M. Fraile, J. I. García, C. I. Herrerías, J. A. Mayoral, E. Pires, Chem.
Soc. Rev. 2009, 38, 695-706.
[4]
[5]
a) M. Gruttadauria, F. Giacalone, R. Noto, Chem. Soc. Rev. 2008, 37,
1666-1688; b) M. Benaglia, Recoverable and Recyclable Catalysts, John
Wiley & Sons, Chichester, 2009.
[6]
a) A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH,
Weinheim, 2005, ch. 4, pp. 45-84; b) Y. Zhang, W. Wang, Catal. Sci.
Technol. 2012, 2, 42-53; c) R. Rios, X. Companyó in Comprehensive
Enantioselective Organocatalysis, Vol. 3 (Ed.: P. I. Dalko), Wiley-VCH,
Weinheim, 2013, ch. 33, pp. 977-1012; d) M. M. Heravi, P. Hajiabbasi,
H. Hamidi, Curr. Org. Chem. 2014, 18, 489-511; e) D. A. Alonso, A.
Baeza, R. Chinchilla, C. Gómez, G. Guillena, I. M. Pastor, D. J. Ramón,
Molecules 2017, 22, 895.
[7]
[8]
P. Chauhan, J. Kaur, S. S. Chimni, Chem. Asian J. 2013, 8, 328-346.
a) A. Fredenhagen, S. Y. Tamura, P. T. M. Kenny, H. Komura, Y. Naya,
K. Nakanishi, J. Am. Chem. Soc. 1987, 109, 4409-4411; b) M. L. Curtin,
R. B. Garland, H. R. Heyman, R. R. Frey, M. R. Michaelides, J. Li, L. J.
Pease, K. B. Glaser, P. A. Marcotte, S. K. Davidsen, Bioorg. Med. Chem.
Lett. 2002, 12, 2919-2923; c) S. C. Bergmeier, K. A. Ismail, K. M. Arason,
S. McKay, D. L. Bryant, D. B. McKay, Bioorg. Med. Chem. Lett. 2004, 14,
3739-3742; d) J. Pohlmann, T. Lampe, M. Shimada, P. G. Nell, J.
Pernerstorfer, N. Svenstrup, N. A. Brunner, G. Schiffer, C. Freiberg,
Bioorg. Med. Chem. Lett. 2005, 15, 1189-1192; e) J. Uddin, K. Ueda, E.
R. O. Siwu, M. Kita, D. Uemura, Bioorg. Med. Chem. 2006, 14, 6954-
6961; f) M. Kabata, T. Suzuki, K. Takabe, H. Yoda, Tetrahedron Lett.
2006, 47, 1607-1611; g) G.-J. Lin, S.-P. Luo, X. Zheng, J.-L. Ye, P.-Q.
Huang, Tetrahedron Lett. 2008, 49, 4007-4010; h) J.-F. Bai, L.-L. Wang,
L. Peng, Y.-L. Guo, L.-N. Jia, F. Tian, G.-Y. He, X.-Y. Xu, L. X. Wang, J.
Org. Chem. 2012, 77, 2947-2953; i) K. Kamiński, J. Obniska, I. Chlebek,
B. Wiklik, S. Rzepka, Bioorg. Med. Chem. 2013, 21, 6821-6830; j) M.
Sortino, A. Postigo, S. Zacchino, Molecules 2013, 18, 5669-5683; k) Z.
Han, P. Li, Z. Zhang, C. Chen, Q. Wang, X.-Q. Dong, X. Zhang, ACS
Catal. 2016, 6, 6214-6218; l) K. Kaminski, Curr. Top. Med. Chem. 2017,
17, 858-874.
Acknowledgements
Financial support of the Hungarian National Science Foundation
through OTKA Grant K 109278 is appreciated. The work was
supported by the ÚNKP-17-2-II. New National Excellence
Program of the Ministry of Human Capacities, Hungary (V.
Kozma.). The authors thank to Tamás Gyulavári, Prof. Klára
Hernádi, Dr. Gábor Varga and Dr. Gergő Motyán for their help in
characterization of the chiral solid catalysts.
[9]
a) G.-L. Zhao, Y. Xu, H. Sundén, L. Eriksson, M. Sayad, A. Córdova,
Chem. Commun. 2007, 734-735; b) T. Miyura, A. Masuda, M. Ina, K.
Nakashima, S. Nishida, N. Tada, A. Itoh, Tetrahedron: Asymmetry 2011,
22, 1605-1609; c) T. C. Nugent, A. Sadiq, A. Bibi, T. Heine, L. L. Zeonjuk,
N. Vankova, B. S. Bassil, Chem. Eur. J. 2012, 18, 4088-4098; d) C. G.
Kokotos, Org. Lett. 2013, 15, 2406-2409; e) W. Yang, K.-Z. Jiang, X. Lu,
H.-M. Yang, L. Li, Y. Lu, L.-W. Xu, Chem. Asian J. 2013, 8, 1182-1190;
f) S. Muramulla, J.-A. Ma, J. C.-G. Zhao, Adv. Synth. Catal. 2013, 355,
1260-1264; g) C. E. Grünenfelder, J. K. Kisunzu, H. Wennemers, Angew.
Chem. Int. Ed. 2016, 55, 8571-8574; Angew. Chem. 2016, 128, 8713-
8716; h) T. C. Nugent, A. A. E. D. Hussein, S. Ahmed, F. T. Najafian, I.
Hussain, T. Georgiev, M. K. Aljoumhawy, Adv. Synth. Catal. 2017, 359,
2824-2831.
Conflict of interest
The authors declare no conflict of interest.
Keywords: Michael addition; asymmetric; heterogeneous;
organocatalyst; maleimide
[1]
a) I. Ojima (Ed.) Catalytic Asymmetric Synthesis, 2nd ed., John Wiley &
Sons, Hoboken, New Jersey, 2000; b) H. U. Blaser, E. Schmidt (Eds.)
Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and
Solutions, Wiley-VCH, Weinheim, 2004; c) K. Mikami, M. Lautens (Eds.)
New Frontiers in Asymmetric Catalysis, John Wiley & Sons, Hoboken,
New Jersey, 2007; d) I. Ojima (Ed.) Catalytic Asymmetric Synthesis, 3rd
ed., John Wiley & Sons, Hoboken, New Jersey, 2010.
[10] a) F. Yu, Z. Jin, H. Huang, T. Ye, X. Liang, J. Ye, Org. Biomol. Chem.
2010, 8, 4767-4774; b) F. Xue, L. Liu, S. Zhang, W. Duan, W. Wang,
Chem. Eur. J. 2010, 16, 7979-7982; c) J.-F. Bai, L. Peng, L.-L. Wang, L.-
X. Wang, X.-Y. Xu, Tetrahedron 2010, 66, 8928-8932; d) T. Miura, S.
Nishida, A. Masuda, N. Tada, A. Itoh, Tetrahedron Lett. 2011, 52, 4158-
4160; e) Z.-W. Ma, Y.-X. Liu, W.-J. Zhang, Y. Tao, Y. Zhu, J.-C. Tao, M.-
S. Tang, Eur. J. Org. Chem. 2011, 6747-6754; f) Z.-W. Ma, Y.-X. Liu, P.-
L. Li, H. Ren, Y. Zhu, J.-C. Tao, Tetrahedron: Asymmetry 2011, 22, 1740-
1748; g) A. Avila, R. Chinchilla, C. Nájera, Tetrahedron: Asymmetry 2012,
23, 1625-1627; h) M. Durmaz, A. Sirit, Tetrahedron: Asymmetry 2013,
24, 1443-1448; i) A. Avila, R. Chinchilla, E. Gómez-Bengoa, C. Nájera,
Tetrahedron: Asymmetry 2013, 24, 1531-1535; j) S. Orlandi, G. Pozzi, M.
Ghisetti, M. Benaglia, New J. Chem. 2013, 37, 4140-4147; k) A. Avila, R.
Chinchilla, E. Gómez-Bengoa, C. Nájera, Eur. J. Org. Chem. 2013, 5085-
5092; l) Z.-T. Song, T. Zhang, H.-L. Du, Z.-W. Ma, C.-H. Zhang, J.-C.
Tao, Chirality 2014, 26, 121-127.
[2]
[3]
a) B. List, K. Maruoka (Eds.) Science of Synthesis: Asymmetric
Organocatalysis, Thieme, Stuttgart, 2012; b) M. Waser, Asymmetric
Organocatalysis in Natural Product Synthesis, Springer, Wien, 2012; c)
P. I. Dalko (Ed.) Comprehensive Enantioselective Organocatalysis:
Catalysts, Reactions, and Applications, Vol. 1-3, Wiley-VCH, Weinheim,
2013.
a) K. Ding, Y. Uozumi (Eds.) Handbook of Asymmetric Heterogeneous
Catalysis, Wiley-VCH, Weinheim, 2008; b) M. Gruttadauria, F. Giacalone,
(Eds.) Catalytic Methods in Asymmetric Synthesis: Advanced Materials,
Techniques and Applications, John Wiley & Sons, Hoboken, New Jersey,
2011; c) R. Šebesta (Ed.) Enantioselective Homogeneous Supported
Catalysis, RSC Green Chemistry No. 15, RSC Publ., Cambridge, 2012;
This article is protected by copyright. All rights reserved.