DOI: 10.1039/C5CC01521A
ChemComm
COMMUNICATION
Journal Name
101, 5723-5726; (c) B. M. Trost, Org. Process Res. Dev., 2012, 16
,
Ohkubo, T. Ishioka and T. Shibata, J. Org. Chem., 2012, 77, 4826-
185-194.
4831.
6
For reviews see: (a) Karlström, A. S. E.; Bäckvall, J. E. in Modern 17 For selected examples using Grignard reagents see: (a) M. Magrez,
Organocopper Chemistry; Krause, N. (Ed.); Wiley-VCH, Weinheim,
2002; (b) S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J.
Minnaard and B. L. Feringa, Chem. Rev., 2008, 108, 2824-2852; (c)
A. Alexakis, J. E. Backväll, N. Krause, O. Pàmies and M. Diéguez,
Chem. Rev., 2008, 108, 2796-2823.
Y. Le Guen, O. Baslé, C. Crévisy and M. Mauduit, Chem. Eur. J.,
2013, 19, 1199-1203; (b) H. Seo, D. Hirsch-Weil, K. A. Abboud and
S. Hong, J. Org. Chem., 2008, 73, 1983-1986; (c) K. B. Selim, Y.
Matsumoto, Y. Yamamoto, K. Yamada and K. Tomioka, Angew.
Chem. Int. Ed., 2009, 48, 8733-8735; (d) S. Ando, H. Matsunaga and
7
(a) M. Julia, A. Righini and J. Verpeaux, Tetrahedron Lett., 1979, 20
,
T. Ishizuka, Asian J. Org. Chem., 2014, 3, 1058-1061.
2393-2544; (b) P. Barsanti, V. Calò, L. Lopez, G. Marchese, F. Naso 18 For selected examples using zinc reagents see: (a) O. A. Larsen, W.
and G. Pesce, J. Chem. Soc., Chem. Commun. 1978, 1085-1086.
J. E. Backväll, M. Sellèn and B. J. Grant, J. Am. Chem. Soc., 1990,
112, 6615-6621.
Leu, C. N. Oberhuber, J. E. Campbell and A. H. Hoveyda, J. Am.
Chem. Soc., 2004, 126, 11130-11131; (b) J. J. van Veldhuizen, J. E.
Campbell, R. E. Giudici and A. H. Hoveyda, J. Am. Chem. Soc.,
2005, 127, 6877-6882.
8
9
J. Norinder, K. Bogár, L. Kanupp and J. E. Backväll, Org. Lett.,
2007,
9
, 5095-5098.
19 For selected examples using aluminium reagents see: (a) F. Gao, K.
P. McGrath, Y. Lee and A. H. Hoveyda, J. Am. Chem. Soc., 2010,
132, 14315-14320; (b) F. Gao, Y. Lee, K. Mandai and A. H.
Hoveyda, Angew. Chem. Int. Ed., 2010, 49, 8370-8374; (c) J. A.
Dabrowski, F. Gao and A. H. Hoveyda, J. Am. Chem. Soc., 2011,
133, 4778-4781.
10 (a) A. M. Lauer, F. Mahmud and J. Wu, J. Am. Chem. Soc., 2011,
133, 9119-9123; (b) W. Sheng, M. Wang, M. Lein, L. Jiang, W. Wei
and J. Wang, Chem. Eur. J. 2013, 19, 14126-14142.
11 Developing Cu-catalyzed γ-selective allylic alkylation methodologies
with organoboron compounds, Hoveyda and coworkers found
variable amounts of linear product by employing monodentate NHC- 20 For Cu-free asymmetric allylic alkylation with Grignard reagents
ligands in combination with allenyl and vinyl boronic esters: (a) B.
Jung and A. H. Hoveyda, J. Am. Chem. Soc., 2012, 134, 1490-1493;
(b) F. Gao, J. L. Carr and A. H. Hoveyda, J. Am. Chem. Soc., 2014,
136, 2149-2161.
catalyzed by NHC carbenes see: (a) Y. Lee and A. H. Hoveyda, J.
Am. Chem. Soc. 2006, 128, 15604-15605; (b) O. Jackowski and A.
Alexakis, Angew. Chem. Int. Ed., 2010, 49, 3346-3350.
21 S. Díez-González and S. P. Nolan, Top. Organomet. Chem., 2007, 21
,
12 For examples of Cu-catalyzed asymmetric AA with organolithium
47-82.
reagents, see: (a) M. Pérez, M. Fañanás-Mastral, P. H. Bos, A. 22 A complex mixture of products was always obtained when other
Rudolph, S. R. Harutyunyan and B. L. Feringa, Nat. Chem., 2011,
3
,
solvents were used in the absence of copper complex. See Supporting
Information for further details.
377-381; (b) M. Fañanás-Mastral, M. Pérez, M.; P. H. Bos, A.
Rudolph, S. R. Harutyunyan and B. L. Feringa, Angew. Chem. Int. 23 In preliminary studies, a Z:E = 68:32 mixture of o-methoxycinnamyl
Ed., 2012, 51, 1922-1925; (c) P. H. Bos, A. Rudolph, M. Pérez, M.
Fañanás-Mastral, S. R. Harutyunyan and B. L. Feringa, Chem.
Commun., 2012, 48, 1748-1750; (d) M. Pérez, M. Fañanás-Mastral,
bromide was converted into a Z:E = 68:32 mixture of the
corresponding alkylated linear product, with a regioselectivity of α:γ
= 97:3. See Supporting Information for further details.
V. Hornillos, A. Rudolph, P. H. Bos, S. R. Harutyunyan and B. L. 24 (a) H. L. Goering and S. Kantner, J. Org. Chem., 1983, 48, 721-724;
Feringa, Chem. Eur. J., 2012, 18, 11880-11883; (e) S. Guduguntla,
(b) T. Spangenberg, A. Schoenfelder, B. Breit and A. Mann, Eur. J.
Org. Chem., 2010, 6005-6018.
M. Fañanás-Mastral and B. L. Feringa, J. Org. Chem., 2013, 78
,
8274-8280.
25 P.-F. Larsson, P.-O. Norrby and S. Woodward, in Copper-Catalyzed
Asymmetric Synthesis (A. Alexakis, N. Krause and S. Woodward,
Eds.), Wiley-VCH, Weinheim, 2014, Chapter 12.
13 For Pd-catalyzed cross-coupling of organolithium reagents, see: (a)
S. Murahashi, M. Yamamura, K. Yanagisawa, N. Mita and K.
Kondo, J. Org. Chem., 1979, 44, 2408-2417; (b) M. Giannerini, M. 26 (a) M. Yamanaka, S. Kato and E. Nakamura, J. Am. Chem. Soc.
Fañanás-Mastral and B. L. Feringa, Nat. Chem., 2013,
5
, 667-672; (c)
2004, 126, 6287-6293; (b) N. Yoshikai, S. L. Zhang and E.
Nakamura, J. Am. Chem. Soc., 2008, 130, 12862-12863; (c) N.
Yoshikai and E. Nakamura, Chem. Rev., 2012, 112, 2339-2372.
V. Hornillos, M. Giannerini, C. Vila, M. Fañanás-Mastral and B. L.
Feringa, Org. Lett., 2013, 15, 5114-5117; (d) M. Giannerini, M.
Fañanás-Mastral and B. L. Feringa, Angew. Chem. Int. Ed., 2013, 52
13329-13333; (e) C. Vila, M. Giannerini, V. Hornillos, M. Fañanás-
Mastral and B. L. Feringa, Chem. Sci., 2014, , 1361-1367.
14 (a) The Chemistry of Organolithium Compounds; Z. Rappoport and I.
,
27 A plausible alternative pathway could involve the formation of an
intermediate enyl[σ+π] Cu(III) complex. See reference 26a.
5
Catalysis and Organocatalysis, Springer, Berlin, 2011.
Marek (Eds.), Wiley-VCH, Weinheim, 2004. (b) Lithium Compounds 29 Direct SN2 displacement without the presence of
a
Cu(III)
in Organic Synthesis; R. Luisi and V. Capriati (Eds.) Wiley-VCH,
Weinheim, 2014.
intermediate is unlikely, as even simple SN2 reactions of alkyl
halides, performed with cuprates, are still proposed to proceed
through oxidative addition to afford Cu(III) species, based on a
number of earlier studies. For mechanistic studies on Cu-catalyzed
allylic substitutions, see Ref. 26. For NMR-detection of Cu(III)-
intermediates in substitution reactions of alkyl halides with Gilman
Soc., 2007, 129, 11362.
15 V. H. Gessner, C. Däschlein and C. Strohmann, Chem. Eur. J., 2009,
15, 3320-3334.
16 For representative examples of C(sp3)-C(sp3) cross-couplings of allyl
substrates with other organometallic reagents, see: (a) S. Son and G.
C. Fu, J. Am. Chem. Soc., 2008, 130, 2756-2757; (b) K. Endo, T.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012