4
C. R. Johnson et al. / Bioorg. Med. Chem. Lett. xxx (2013) xxx–xxx
References and notes
1. Huang, D. B.; White, A. C. Gastroenterol. Clin. North Am. 2006, 35, 291.
2. Striepen, B.; Pruijssers, A. J.; Huang, J.; Li, C.; Gubbels, M. J.; Umejiego, N. N.;
Hedstrom, L.; Kissinger, J. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 3154.
3. Abrahamsen, M. S.; Templeton, T. J.; Enomoto, S.; Abrahante, J. E.; Zhu, G.;
Lancto, C. A.; Deng, M.; Liu, C.; Widmer, G.; Tzipori, S.; Buck, G. A.; Xu, P.;
Bankier, A. T.; Dear, P. H.; Konfortov, B. A.; Spriggs, H. F.; Iyer, L.;
Anantharaman, V.; Aravind, L.; Kapur, V. Science 2004, 304, 441.
4. Xu, P.; Widmer, G.; Wang, Y.; Ozaki, L. S.; Alves, J. M.; Serrano, M. G.; Puiu, D.;
Manque, P.; Akiyoshi, D.; Mackey, A. J.; Pearson, W. R.; Dear, P. H.; Bankier, A.
T.; Peterson, D. L.; Abrahamsen, M. S.; Kapur, V.; Tzipori, S.; Buck, G. A. Nature
2004, 431, 1107.
5. Hedstrom, L. Chem. Rev. 2009, 109, 2903.
6. Striepen, B.; White, M. W.; Li, C.; Guerini, M. N.; Malik, S. B.; Logsdon, J. M., Jr.;
Liu, C.; Abrahamsen, M. S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 6304.
7. Umejiego, N. N.; Li, C.; Riera, T.; Hedstrom, L.; Striepen, B. J. Biol. Chem. 2004,
279, 40320.
8. Umejiego, N. N.; Gollapalli, D.; Sharling, L.; Volftsun, A.; Lu, J.; Benjamin, N. N.;
Stroupe, A. H.; Riera, T. V.; Striepen, B.; Hedstrom, L. Chem. Biol. 2008, 15, 70.
9. MacPherson, I. S.; Kirubakaran, S.; Gorla, S. K.; Riera, T. V.; D’Aquino, J. A.;
Zhang, M.; Cuny, G. D.; Hedstrom, L. J. Am. Chem. Soc. 2010, 132, 1230.
10. Maurya, S. K.; Gollapalli, D. R.; Kirubakaran, S.; Zhang, M.; Johnson, C. R.;
Benjamin, N. N.; Hedstrom, L.; Cuny, G. D. J. Med. Chem. 2009, 52, 4623.
11. Kirubakaran, S.; Gorla, S. K.; Sharling, L.; Zhang, M.; Liu, X.; Ray, S. S.;
Macpherson, I. S.; Striepen, B.; Hedstrom, L.; Cuny, G. D. Bioorg. Med. Chem. Lett.
2012, 22, 1985.
12. Gorla, S. K.; Kavitha, M.; Zhang, M.; Liu, X.; Sharling, L.; Gollapalli, D. R.;
Striepen, B.; Hedstrom, L.; Cuny, G. D. J. Med. Chem. 2012, 55, 7759.
13. Mylari, B. L.; Larson, E. R.; Beyer, T. A.; Zembrowski, W. J.; Aldinger, C. E.; Dee,
M. F.; Siegel, T. W.; Singleton, D. H. J. Med. Chem. 1991, 34, 108.
14. Niebel, C.; Lokshin, V.; Sigalov, M.; Krief, P.; Khodorkovsky, V. Eur. J. Org. Chem.
2008, 3689.
15. Sharling, L.; Liu, X.; Gollapalli, D. R.; Maurya, S. K.; Hedstrom, L.; Striepen, B.
PLoS Negl. Trop. Dis. 2010, 4, e794.
16. Campbell, L. D.; Stewart, J. N.; Mead, J. R. J. Parasitol. 2002, 88, 1014.
17. Ehigiator, H. N.; Romagnoli, P.; Borgelt, K.; Fernandez, M.; McNair, N.; Secor, W.
E.; Mead, J. R. Parasite Immunol. 2005, 27, 17.
18. Sun, X. E.; Sharling, L.; Muthalagi, M.; Mudeppa, D. G.; Pankiewicz, K. W.;
Felczak, K.; Rathod, P. K.; Mead, J.; Striepen, B.; Hedstrom, L. J. Biol. Chem. 2010,
285, 15916.
Figure 2. Inhibition of CpIMPDH by 27.
may also be necessary for this compound series in order to achieve
in vivo efficacy.
In conclusion, a SAR study of phthalazinone-based CpIMPDH
inhibitors revealed that expansion of the aniline ring could in-
crease inhibitory activity, while maintaining selectivity relative
to the human orthologs. The phthalazinone-based CpIMPDH inhib-
itors described herein could serve as lead compounds for the devel-
opment of effective treatments of cryptosporidiosis as well as
useful molecular probes for studying Cryptosporidium parasites.
Acknowledgments
This work was supported by funding from the National Institute
of Allergy and Infectious Diseases (U01 AI075466 and U01
AI075466S1) to L.H. G.D.C. thanks the New England Regional Cen-
ter of Excellence for Biodefense and Emerging Infectious Diseases
(NERCE/BEID) and Harvard NeuroDiscovery Center for financial
support. IC50 data for these entire compounds were maintained
to thank Ms. Nina McNair for technical support. C.R.J. would like
to thank Drs. Sivapriya Kirubakaran and Jihan Khan for insightful
and helpful suggestions.
19. The anticryptosporidial activity of 27 was assessed in the IL-12 knockout
mouse model, which resembles the acute human disease. Mice were
inoculated with 1000 oocysts and treated by gavage with vehicle (10%DMSO/
corn oil), vehicle plus 250 mg/kg 27, or 2000 mg/kg paromomycin starting 4 h
post infection. Treatment was given once daily for 7 days and mice sacrificed
on day 8 (peak infection). Parasite load was quantified by FACS assays by the
presence of the oocysts in the feces at days 0, 4 and 7. Fecal pellets from the
mice were collected and homogenized in adjusted volumes of 2.5% potassium
dichromate. Aliquots (200 ll) of vortexed samples were processed over micro-
scale sucrose gradients. The oocyst-containing fraction was collected and
washed. Purified oocysts were incubated with a fluorescein-labeled oocyst-
specific monoclonal antibody (OW5O-FITC) for 20 min. Samples were adjusted
to 600 ll and assayed assayed with a 102-s sampling interval (100 ll) using
logical gating of forward/side scatter and OW5O-FITC fluorescence signal on a
Becton Dickinson FACScan flow cytometer. Flow cytometry data were
evaluated by analysis of variance (Microsoft Excel; Microsoft Corporation,
Redmond, WA).
Supplementary data
Supplementary data associated with this article can be found, in
the
online
version,
at