pubs.acs.org/joc
chemists.2 In particular several six-membered-ring hetero-
Synthesis of (S)- and (R)-5-Oxo-piperazine-2-
Carboxylic Acid and Its Application to
Peptidomimetics
cyclic amino acids have been synthesized, comprising deri-
vatives of pipecolic,3 piperazine-2-carboxylic,4 1,4-thiazine-
3-carboxylic,5 1,3-thiazine-4-carboxylic,6 and morpholine-
3-carboxylic acid.7 5-Oxo-piperazine-2-carboxylic acid
(PCA, Figure 1), on the other hand, has received much less
attention, and only a few reports deal with its synthesis and
structural and biological properties.8
Karine Guitot,†,‡ Stefano Carboni,† Oliver Reiser,*,‡ and
Umberto Piarulli*,†
†
ꢀ
Dipartimento di Scienze Chimiche e Ambientali, Universita
degli Studi dell’Insubria, Via Valleggio, 11, 22100 Como,
‡
Italy, and Insitut fur Organische Chemie, Universitat
€
Regensburg, Universitatstrasse, 31, 93053 Regensburg,
Germany
€
umberto.piarulli@uninsubria.it;
FIGURE 1. (S)-N-Boc-5-oxo-piperazine-2-carboxylic acid 1.
Received June 30, 2009
In the frame of our studies directed toward the synthesis of
peptidomimetics with well-defined conformational proper-
ties,9 we became interested in the synthesis of 5-oxo-piper-
azinone-2-carboxylic acid (PCA), and its introduction into
peptide sequences as an inducer of secondary structures.
Herein we report a practical synthesis of (S)- and (R)-N-
Boc-5-oxo-piperazine-2-carboxylic acid 1 (Figure 1), its
introduction into peptides by a solution-phase peptide-
synthesis strategy, and a conformational analysis of two
tetrapeptide mimics incorporating a PCA residue.
Our synthetic approach (Scheme 1) started from L-serine
methyl ester hydrochloride, which was N-alkylated by using
ethyl glyoxylate in the presence of Pd/C and under an
atmosphere of H2. Following a procedure that has been
reported for the synthesis of 2,3-diamino propionic acid
starting from serine derivatives,10 the resulting alcohol 2
was transformed into the azide 3 by a Mitsunobu reaction,
using a solution of hydrazoic acid in toluene. Other meth-
odologies involving the activation of the hydroxyl group of
A straightforward synthesis of (S)- and (R)-N-Boc-5-oxo-
piperazine-2-carboxylic acid is reported starting from
L- or D-serine and ethyl glyoxylate. Those were evaluated
as constituents in two tetrapeptides by studying their
1
secondary structure by H NMR spectroscopy. In the
case of Boc-Val-(S)-PCA-Gly-Leu-OMe, two readily
interconverting conformations (in a 40%:60% ratio)
were observed, differing for the cis-trans isomerizaton
of the tertiary amide bond, while Boc-Val-(R)-PCA-Gly-
Leu-OMe displayed an equilibrium between a γ-turn and
a type II β-turn conformation.
(4) (a) Eichorn, E.; Roduit, J.-P.; Shaw, N.; Heinzmann, K.; Kiener, A.
Tetrahedron: Asymmetry 1997, 8, 2533–2536. (b) Letavic, M. A.; Barberia,
J. T.; Carty, T. J.; Hardinik, J. R.; Liras, J.; Lopresti-Morrow, L. L.;
Mitchell, P. G.; Noe, M. C.; Reeves, L. M.; Snow, S. L.; Stam, E. J.; Sweeney,
F. J.; Vaughn, M. L.; Yu, C. H. Bioorg. Med. Chem. Lett. 2003, 13, 3243–
3246. (c) Palucki, B. L.; Park, M. K.; Nargund, R. P.; Tang, R.; MacNeil, T.;
Weinberg, D. H.; Vongs, A.; Rosenblum, C. I.; Doss, G. A.; Miller, R. R.;
Stearns, R. A.; Peng, Q.; Tamvakopoulos, C.; Van der Ploeg, L. H. T.;
Partchett, A. A. Bioorg. Med. Chem. Lett. 2005, 15, 1993–1996. (d) Morley,
R. M.; Tse, H.-W.; Feng, B.; Miller, J. C.; Monaghan, D. T.; Jane, D. E.
J. Med. Chem. 2005, 48, 2627–2637. (e) Olsen, C. A.; Christensen, C.;
Nielsen, B.; Clausen, R. C.; Kristensen, J. L.; Franzyk, H. H.; Jaroszewski,
J. W. Org. Lett. 2005, 8, 3371–3374.
The design and synthesis of conformationally restricted
amino acids has been the focus of extensive research because
these compounds mimic or induce specific secondary struc-
tural features of peptides and proteins.1 Since the discovery
of the crucial role of proline in protein structures, cyclic
R-amino acids containing a heterocyclic ring have attracted
considerable attention from both synthetic and medicinal
(5) Shiraiwa, T.; Tadokoro, K.; Tanaka, H.; Namba, K.; Yokono, N.;
Shibazaki, K.; Kubo, M.; Kurokawa, H. Biosci. Biotechnol. Biochem. 1998,
62, 2382–2387.
(1) (a) Kaul, R.; Balaram, P. Bioorg. Med. Chem. 1999, 7, 105–117. (b)
Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. Rev. 2001, 101,
3131–3152.
(6) Zabriskie, T. M.; Liang, X. Bioorg. Med. Chem. Lett. 1997, 7, 457–462.
(7) (a) Sladojevich, F.; Trabocchi, A.; Guarna, A. J. Org. Chem. 2007, 72,
4254–4257. (b) Trabocchi, A.; Sladojevich, F.; Guarna, A. Chirality 2009, 21,
584–594.
(8) (a) Koegel, R. J.; Birnbaum, S. M.; Baker, C. G.; Sober, H. A.;
Greenstein, J. P. J. Biol. Chem. 1953, 201, 547–551. (b) Hardegger, E.;
Liechti, P.; Jackman, L. M.; Boller, A.; Plattner, P. A. Helv. Chim. Acta 1963,
46, 60–74. (c) Bogdanovaky, D.; Barbier, M. Bull. Soc. Chim. Fr. 1965, 832–
834.
(9) Ressurreicao, A. S. M.; Bordessa, A.; Civera, M.; Belvisi, L.; Gennari,
C.; Piarulli, U. J. Org. Chem. 2008, 73, 652–660.
(10) (a) Boger, D. L.; Lee, J. K. J. Org. Chem. 2000, 65, 5996–6000.
(b) Pickersgill, I. F.; Rapoport, H. J. Org. Chem. 2000, 65, 4048–4057.
(2) Park, K.-H.; Kurth, M. J. Tetrahedron 2002, 58, 8629–8659.
(3) (a) Kadouri-Puchot, C.; Comesse S. Amino Acids 2005, 29, 101-130 and
references cited therein. (b) Watanabe, L. A.; Haranaka, S.; Jose, B.; Yoshida, M.;
Kato, T.; Moriguchi, M.; Soda, K.; Nishino, N. Tetrahedron: Asymmetry 2005,
16, 903–908. (c) Kumar, P.; Bodas, M. S. J. Org. Chem. 2005, 70, 360–363. (d)
Liang, N.; Datta, A. J. Org. Chem. 2005, 70, 10182–10185. (e) Le Corre, L.;
Dhimane, H. Tetrahedron Lett. 2005, 46, 7495–7497. (f) Alegret, C.; Santacana,
F.; Riera, A. J. Org. Chem. 2007, 72, 7688–7692. Pham, V.-T.; Joo, J.-E.; Tian,
Y.-S.; Chung, Y. S.; Lee, K.-Y.; Oh, C.-Y.; Ham, W.-H. Tetrahedron: Asymmetry
2008, 19, 318–321.
DOI: 10.1021/jo901389q
r
Published on Web 09/29/2009
J. Org. Chem. 2009, 74, 8433–8436 8433
2009 American Chemical Society