A.H. Kianfar et al. / Inorganica Chimica Acta 365 (2011) 108–112
109
H3C
O
Methanol
+
H3C
N
NH2
OH
NH2
NH2
OH
HL
O
HL
+
H3C
Methanol
N
N
HO
X
OH
HO
X
H2L
X = H,
L1,
5-Br, 5-NO2,
5-MeO, 4-MeO,
L4, L5,
3-MeO
L6
L2,
L3,
CH3
Methanol
+
O
V
H2L
VO(acac)2
N
O
N
O
X
Fig. 1. The structure of Schiff bases and their complexes.
0.1 M tetrabutylammonium perchlorate as the supporting
electrolyte.
1609 (C@N), 1324 (NO2), 991 (V@O). UV–Vis, kmax (nm) (e,
L molꢀ1 cmꢀ1) (ethanol): 372 (40 000), 311 (48 000).
VOL4 yield (85%): Anal. Calc. for C22H18N2O4V: C, 62.11; H, 4.23;
N, 6.58. Found: C, 62.68; H, 4.32; N, 6.87%. FT-IR (KBr cmꢀ1
1614 (C@N), 1273 (C–O), 980 (V@O). UV–Vis, kmax (nm) (
L molꢀ1 cmꢀ1
(ethanol): 469(sh) (19 000), 397 (29 000), 322
) mmax
2.2. Synthesis
e
,
The tetradentate Schiff base ligands, L1–L4, the new L5 and L6
were prepared according to the literature [14]. The vanadyl com-
plexes were synthesised by refluxing a methanolic solution of the
tetradentate Schiff base ligands and vanadylacetylacetonate. The
reaction was continued for 2 h until a green precipitate was ob-
tained. It was filtered, washed with methanol and dried in vacuum.
)
(45 000), 247 (84 000).
VOL5 yield (80%): Anal. Calc. for for C22H18N2O4V: C, 62.11; H,
4.23; N, 6.58. Found: C, 62.46; H, 3.25; N, 6.65%. FT-IR (KBr
cmꢀ1
(nm) (
(37 000).
VOL6 yield (75%): Anal. Calc. for for C22H18N2O4V: C, 62.11; H,
4.23; N, 6.58. Found: C, 62.93; H, 4.28; N, 6.77%. FT-IR (KBr
cmꢀ1
mmax 1605 (C@N), 1249 (C–O), 986 (V@O) . UV–Vis, kmax
(nm) (
, L molꢀ1 cmꢀ1) (ethanol): 401 (4200), 342 (65 000), 310
)
mmax 1614 (C@N), 1242 (C–O), 978 (V@O) . UV–Vis, kmax
e
, L molꢀ1 cmꢀ1) (ethanol): 387 (26 000), 325 (21 000), 243
H2L5 yield (80%): (C21H18N2O2), FT-IR (KBr cmꢀ1
) mmax 1635
(C@N), 1504 (C@C), 1222 (C–O). UV–Vis, kmax (nm)
(e,
L molꢀ1 cm-1) (CHCl3): 313 (3400), 278 (7400). 1H NMR (DMSO-
d6, 400 MHz) d = 2.50 (s, 3H, CH3), d = 3.80 (s, 3H, O–CH3),
d = 6.20–7.80 (m, 11H), d = 9.00 (s, 1H, HC@N), d = 12.90 (s, 1H,
OH), d = 14.30 (s, 1H, OH).
)
e
(56 000), 241 (93 000).
H2L6 yield (85%): (C21H18N2O2), FT-IR (KBr cmꢀ1
)
mmax 1643
(C@N), 1461 (C@C), 1257 (C–O). UV–Vis, kmax (nm)
L molꢀ1 cmꢀ1 (CHCl3): 343 (14 000), 265 (42 000). 1H NMR
(e,
)
3. Results and discussion
(DMSO-d6, 400 MHz) d = 2.50 (s, 3H, CH3), d = 3.60 (s, 3H, O–CH3),
d = 6.10–7.50 (m, 11H), d = 9.80 (s, 1H, HC@N), d = 15.40 (s, 2H,
OH).
3.1. IR characteristics
VOL1 yield (80%): Anal. Calc. for C21H16N2O3V: C, 63.79; H, 4.05;
The IR spectra of the free Schiff base ligands and the complexes
show several bands in the 400–4000 cm-1 region. The OH stretch-
ing frequency of the ligands is observed in the region of 2500–
3100 cmꢀ1 due to the internal hydrogen bonding vibration (O–
Hꢁ ꢁ ꢁN). This band disappeared in the spectra of the complexes
[11,12,15].
The free ligands have a characteristic C@N bond in 1611–
1643 cmꢀ1 region. For the Schiff base complexes C@N was ob-
served in 1600–1614 cmꢀ1. The C@N stretching band of the schiff
base complexes is generally shifted to a lower frequency, indicat-
ing a decrease in the C@N bond order due to the coordinate bond
N, 7.08. Found: C, 63.95; H, 4.09; N, 7.12%. FT-IR (KBr cmꢀ1
) mmax
1610 (C@N), 976 (V@O). UV–Vis, kmax (nm) (e
, L molꢀ1 cmꢀ1) (eth-
anol): 393 (24 500), 320 (27 000), 244 (58 000).
VOL2 yield (80%): Anal. Calc. for C21H15BrN2O3V: C, 52.95; H,
3.16; N, 5.90. Found: C, 53.57; H, 3.21; N, 5.98%. FT-IR (KBr
cmꢀ1
L molꢀ1 cmꢀ1
(19 000), 249 (32 000).
VOL3 yield (85%): Anal. Calc. for C21H15N3O5V: C, 57.27; H, 3.40;
N, 9.54. Found: C, 57.89; H, 3.47; N, 9.83%. FT-IR (KBr cmꢀ1
)
mmax 1600 (C@N), 981 (V@O). UV–Vis, kmax (nm)
(e,
)
(ethanol): 389 (11 500), 320 (13 000), 277
)
mmax