Communications
[8] B. M. Trost, I. Hachiya, J. Am. Chem. Soc. 1998, 120, 1104.
[9] B. M. Trost, P. L. Fraisse, Z. T. Ball, Angew. Chem. 2002, 114,
1101; Angew. Chem. Int. Ed. 2002, 41, 1059.
[10] G. C. Lloyd-Jones, A. Pfaltz, Angew. Chem. 1995, 107, 534;
Angew. Chem. Int. Ed. Engl. 1995, 34, 462.
[11] P. A. Evans, J. D. Nelson, J. Am. Chem. Soc. 1998, 120, 5581.
[12] R. Takeuchi, M. Kashio, Angew. Chem. 1997, 109, 268; Angew.
Chem. Int. Ed. Engl. 1997, 36, 263.
phenethylamine, reaction of the allylic amine formed a 2:1
mixture of branched 4a (83% ee) and linear 5a products in a
moderate combined yield (53%). Presumably, isomerization
and partial racemization of the branched allylic amine by the
Pd catalyst occurred before or after coupling. Thus, the allylic
amination appears to be a superior method for the synthesis
of N-aryl allylic amines.
In conclusion, we have developed the first convenient and
highly selective allylic amination with “electron-neutral”
aromatic amines that lack an activating group on the nitrogen
atom. This process was developed by conversion of an iridium
precatalyst into an active cyclometalated catalyst in the
presence of an appropriate additive. This catalyst activation
was either conducted in situ prior to addition of the aromatic
amine or with DABCO additive in the presence of aniline.
This reaction occurs with electron-neutral and electron-rich
aromatic amine nucleophiles as well as aromatic or aliphatic
allylic carbonates, and displays remarkable catalyst efficiency.
Further studies on the reaction mechanism, as well as
applications in synthesis, will be reported in due course.
[13] R. Takeuchi, M. Kashio, J. Am. Chem. Soc. 1998, 120, 8647.
[14] R. Takeuchi, Synlett 2002, 1954.
[15] B. Bartels, C. Garcia-Yebra, F. Rominger, G. Helmchen, Eur. J.
Inorg. Chem. 2002, 2569.
[16] B. Bartels, C. Garcia-Yebra, G. Helmchen, Eur. J. Org. Chem.
2003, 1097.
[17] For selective formation of branched products with palladium
catalysts, see refs [18–20].
[18] I. D. G. Watson, S. A. Styler, A. K. Yudin, J. Am. Chem. Soc.
2004, 126, 5086.
[19] C. E. Anderson, L. E. Overman, J. Am. Chem. Soc. 2003, 125,
12412.
[20] T. Hayashi, M. Kawatsura, Y. Uozumi, J. Am. Chem. Soc. 1998,
120, 1681.
[21] T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 15164.
[22] F. Lopez, T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125,
3426.
Received: April 9, 2004
Revised: May 18, 2004
[23] C. A. Kiener, C. Shu, C. Incarvito, J. F. Hartwig, J. Am. Chem.
Soc. 2003, 125, 14272.
Keywords: allylations · aminations · asymmetric catalysis ·
iridium · regioselectivity
[24] C. Welter, O. Koch, G. Lipowsky, G. Helmchen, Chem.
Commun. 2004, 896.
[25] E. I. Negishi in Handbook of Organopalladium Chemistry for
Organic Synthesis, Vol. 1(Ed.: E. I. Negishi), Wiley Interscience,
New York, NY, 2002, p. 215.
[26] G. Lipowsky, G. Helmchen, Chem. Commun. 2004, 116.
[27] P. A. Evans, J. E. Robinson, K. K. Moffett, Org. Lett. 2001, 3,
3269.
[28] J. F. Hartwig in Modern Arene Chemistry (Ed.: D. Astruc),
Wiley-VCH, Weinheim, 2002, p. 107.
[29] J. F. Hartwig in Handbook of Organopalladium Chemistry for
Organic Synthesis, Vol. 1(Ed.: E. I. Negishi), Wiley-Interscience,
New York, 2002, p. 1051.
[30] B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 1999, 576, 125.
[31] S. Wagaw, R. A. Rennels, S. L. Buchwald, J. Am. Chem. Soc.
1997, 119, 8451.
.
[1] J. S. Glasby, Encyclopedia of the Alkaloids, Vol. 1–5, Plenum,
New York, NY, 1975.
[2] B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921.
[3] J. Tusji, Palladium Reagents and Catalysis, Wiley, New York,
1996.
[4] A. Pfaltz, M. Lautens in Comprehensive Asymmetric Catalysis I–
III, Vol. 2, Springer, New York, 1999, p. 833.
[5] S.-C. Yang, C.-W. Hung, J. Org. Chem. 1999, 64, 5000.
[6] F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami,
M. Yoshifuji, J. Am. Chem. Soc. 2002, 124, 10968.
[7] R. Takeuchi, N. Ue, K. Tanabe, K. Yamashita, N. Shiga, J. Am.
Chem. Soc. 2001, 123, 9525.
4800 ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 4797 –4800