8722 Macromolecules, Vol. 43, No. 21, 2010
Huber and Mecking
extracted with ether and filtered through diatomaceous earth,
and the filtrate was evaporated. The product was purified by
column chromatography (PE:ethyl acetate 1:1) to obtain 6.81 g
References and Notes
(1) (a) Urban, D.; Takamura, K. Polymer Dispersions and Their
Industrial Applications; Wiley-VCH: Weinheim, 2002. (b) van Herk,
A. M. Chemistry and Technology of Emulsion Polymerisation;
Blackwell Publishing: Oxford, 2005. (c) Fitch, R. M. Polymer Col-
loids; Academic Press: San Diego, 1997. (d) Lovell, P. A.; El-Aasser,
M. S. Emulsion Polymerization and Emulsion Polymers; Wiley:
Chichester, 1997.
1
of 4-ethinyl-1-(hexyloxy)-2-methoxybenzene (70%). H NMR
(400 MHz, CDCl3): δ 8.42 (d, J=8.4, 1H), 7.88 (d, J=8.2, 2H),
7.79 (dd, J=1.0, 7.1, 1H), 7.59 (dddd, J=1.3, 6.9, 8.2, 26.5, 2H),
7.46 (dd, J = 7.2, 8.3, 1H), 3.52 (s, 1H). 13C NMR (101 MHz,
CDCl3): δ 133.70, 133.27, 131.42, 129.47, 128.48, 127.14, 126.67,
126.23, 125.28, 119.96, 82.19, 81.96.
(2) Pecher, J.; Mecking, S. Chem. Rev. 2010, in press (doi 10.1021/
cr100132y).
Synthesis of 1,4-Bis(di-tert-butylphosphino)butane. In a 100 mL
Schlenk tube, 5.0 g of di-tert-butylphosphine (34 mmol) was
dissolved in 30 mL of Et2O, and the mixture was cooled to 0 °C
in an ice bath. Within 10 min, 23.90 mL of tBuLi (1.5 M solution
in hexane, 35.9 mmol) was added dropwise. 2.246 g of 1,4-
dichlorobutane (17.68 mmol) was added in a single batch,
upon which the solution became pale yellow. The solution was
stirred for 20 min at 0 °C and another hour at room temperature.
The solvent was removed, and 10 mL of hexane followed by
10 mL of water was added. The organic layer was extracted three
times with 10 mL of hexane each. From the combined organic
layers the solvent was evaporated, and the crude product
was purified by Kugelrohr distillation at 130 °C (0.2 mbar) to
obtain 4.05 g of 1,4-bis(di-tert-butylphosphino)butane (85%).
1H NMR (400 MHz, C6D6, 25 °C): δ/ppm=1.72 (m, 4H), 1,33
(m, 4H), 1.03 (d, 36H, 3JHP = 10,8 Hz). 31P NMR (162 MHz):
δ 29.0.
Preparation of Catalyst Solution (Example). A solution of
33.7 mg (150 μmol) of Pd(OAc)2 in 5 mL of acetonitrile and a
solution of 149.5 mg (450 μmol) of 1,3-bis(di-tert-butylphos-
phino)propane in 5 mL of ethanol were mixed, and the solvent
was evaporated in vacuo. The residue was dissolved in a mixture
of 0.2 mL of ethanol and 4.8 mL of hexane to afford a catalyst
solution with a concentration of 30 μmol Pd/mL.
(3) (a) Antonietti, M.; Landfester, K. Prog. Polym. Sci. 2002, 27, 689–
757. (b) Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; G€untner,
R.; Scherf, U. Nature Mater. 2003, 2, 408–412. (c) Bourgeat-Lami, E.
In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H. S.,
Ed.; American Scientific Publishers: Stevenson Ranch, CA, 2004; Vol.
8, pp 305-332. (d) Wiese, H.; Xue, Z.; Leuninger, J. Chem. Unserer
Zeit 2005, 39, 65–66. (e) Monteil, V.; Stumbaum, J.; Thomann, R.;
Mecking, S. Macromolecules 2006, 39, 2056–2062. (f) Balmer, J. A.;
Schmid, A.; Armes, S. P. J. Mater. Chem. 2008, 18, 5722–5730.
(4) Huber, J.; Mecking, S. Angew. Chem., Int. Ed. 2006, 45, 6314–6317.
(5) Asua, J. M. Prog. Polym. Sci. 2002, 27, 1283–1346.
(6) Zetterlund, B.; Kagawa, Y.; Okubo, M. Chem. Rev. 2008, 108,
3747–3794.
(7) (a) Lowe, A. B.; McCormick, C. L. Aust. J. Chem. 2002, 55, 367–
379. (b) Prescott, S. W.; Ballard, M. J.; Rizzardo, E.; Gilbert, R. G. Aust.
J. Chem. 2002, 55, 415–424. (c) Cunningham, M. F. Prog. Polym. Sci.
2002, 27, 1039–1067. (d) Mecking, S.; Claverie, J. In Late Transition
Metal Polymerization Catalysis; Rieger, B., Baugh, L. S., Kacker, S.,
Striegler, S., Eds.; Wiley-VCH: Weinheim, 2003; pp 231-278. (e) Charleux,
B. In Macromolecular Engineering; Matyjaszewski, K., Gnanou, Y.,
Leibler, L., Eds.; Wiley: New York, 2007; Vol. 1, pp 605-642.
(8) (a)Landfester,K.Annu. Rev. Mater. Res. 2006,36, 231–79. (b) Dieterich,
D.; Uhlig, K. In Ullmann’s Encylopedia of Industrial Chemistry,
6th ed.; Wiley-VCH: Weinheim, 2003; Vol. 28, pp 667-722.
ꢀ
ꢀ
(9) Quemener, D.; Heroguez, V.; Gnanou, Y. Macromolecules 2005,
38, 7977–7982.
Miniemulsion Polymerization Procedure. In a 100 mL round-
bottom Schlenk flask closed with a septum, an aqueous solution
of 0.5 g of SDS in 39 g of water was topped with a layer of 10 mL
of phenylacetylene. To this layer 1.0 mL of catalyst solution
(30 μmol) was added. The mixture was ultrasonicated for 2 min
(Bandelin HD 2200 with a KE76 tip, operated at 120 W),
followed by addition of one drop of methanesulfonic acid while
stirring. The initially pale-yellow emulsion turned to an intense
yellow while the temperature increased significantly. After 1 h of
polymerization an intensely yellow dispersion was obtained.
For analysis, 10 mL of the dispersion was precipitated in
100 mL of methanol, followed by filtration through a nylon filter
(0.45 μm pore size). The polymer was washed with methanol and
dried at room temperature.
Microemulsion Polymerization Procedure. In a 100 mL round-
bottom Schlenk flask closed with a septum, a mixture of 3.0 g of
phenylacetylene, 4.0 g of SDS, 4.0 g of pentanol, and 44.5 g of
water was stirred overnight to afford a clear microemulsion. In a
separate Schlenk flask, 7.5 mL of water, 1.0 g of SDS, and 0.5 g
of pentanol were mixed with 1.0 mL of catalyst solution
(20 μmol/mL) and stirred for 5 min to afford a clear microemul-
sion. For polymerization, 1.25 mL of catalyst microemulsion
was transferred to the monomer microemulsion. After 1 min of
stirring, one drop of methanesulfonic acid was added to the mixture.
After 1 h of polymerization, an intensely orange-colored latex
was obtained.
ꢀ
ꢀ
(10) Quemener, D.; Bousquet, A.; Heroguez, V.; Gnanou, Y. Macro-
molecules 2006, 39, 5589–5591.
(11) Airaud, C.; Heroguez, V.; Gnanou, Y. Macromolecules 2008, 41,
3015–3022.
(12) Lynn, D. M.; Mohr, B.; Grubbs, R. H.; Henling, L. M.; Day, M. W.
ꢀ
J. Am. Chem. Soc. 2000, 122, 6601–6609.
(13) Wache, S. J. Organomet. Chem. 1995, 495, 235–240.
(14) (a) Mecking, S. Colloid Polym. Sci. 2007, 285, 605–619. (b) Claverie,
J. P.; Soula, R. Prog. Polym. Sci. 2003, 28, 619–662. (c) Mecking, S.;
Held, A.; Bauers, F. M. Angew. Chem., Int. Ed. 2002, 41, 544–561.
(15) (a) Furlani, A.; Napoletano, C.; Russo, M. V.; Feast, W. J. Polym.
Bull. 1986, 16, 311–317. (b) Trumbo, D. L.; Marvel, C. S. J. Polym.
Sci., Part A 1987, 25, 1027–1034. (c) Masuda, T.; Mishima, K.;
Fujimori, J.; Nishida, M.; Muramatsu, H.; Higashimura, T. Macro-
molecules 1992, 25, 1401–1404. (d) Schrock, R. R.; Luo, S.; Zanetti,
N. C.; Fox, H. H. Organometallics 1994, 13, 3396–3398. (e) Kishimoto,
Y.; Eckerle, P.; Miyatake, T.; Kainosho, M.; Ono, A.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1999, 121, 12035–12044. (f) Hori, H.;
Six, C.; Leitner, W. Macromolecules 1999, 32, 3178–3182.
(16) (a) Ginsburg, E. J.; Gorman, C. B.; Grubbs, R. H. In Modern
Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim,
1995; pp 353-83. (b) Belov, D. G.; Efimov, O. N.; Belov, G. P. Plast.
Eng. 1998, 45, 297-330. (c) Buchmeiser, M. R. Adv. Polym. Sci. 2006,
197, 137–171.
(17) (a) Neher, D.; Kaltbeitzel, A.; Wolf, A.; Bubeck, C.; Wegner, G.
J. Phys. D: Appl. Phys. 1991, 24, 1193–1202. (b) Sakurai, S.-I.;
Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromole-
cules 2003, 36, 9670–9674. (c) Lam, J. W. Y.; Tang, B. Z. Acc. Chem.
Res. 2005, 38, 745–754. (d) Maeda, K.; Matsushita, Y.; Ezaka, M.;
Yashima, E. Chem. Commun. 2005, 4152–4154. (e) Fukushima, T.;
Takachi, K.; Tsuchihara, K. Macromolecules 2006, 39, 3103–3105.
(18) (a) Amer, I.; Schumann, H.; Ravindar, V.; Baidossi, W.; Goren, N.;
Blum, J. J. Mol. Catal. 1993, 85, 163–171. (b) Yashima, E.; Matsushima,
T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345–6359. (c) Tang,
B. Z.; Poon, W. H.; Leung, S. M.; Leung, W. H.; Peng, H. Macro-
molecules 1997, 30, 2209–2212. (d) Pelagatti, P.; Carcelli, M.; Pelizzi,
C.; Costa, M. Inorg. Chim. Acta 2003, 342, 323–326.
Acknowledgment. Financial support by the DFG (Me1388/
7-1) is gratefully acknowledged. We thank Marina Krumova for
TEM analyses and Lars Bolk for GPC analyses. S.M. is indebted
to the Fonds der Chemischen Industrie and to the Hermann-
Schnell Foundation.
(19) Polymerization of phenyacetylene with a rhodium complex in a
mixture of monomer, toluene, and water has been reported to afford
poly(phenyacetylene) particles: D’Amato, R.; Medei, L.; Venditti, I.;
Russo, M. V.; Falconieri, M. Mater. Sci. Eng., C 2003, 23, 861–865.
Supporting Information Available: Images of inkjet print-
outs with the dispersions. This material is available free of charge