442 Letters in Organic Chemistry, 2010, Vol. 7, No. 6
Batistatos et al.
synthesis of five-membered hetero- and carbocycles that bear
fluorinated one-carbon units. Chem. Asian J., 2008, 3, 393-406.
(a)Viswanathan, R.; Prabhakaran, E.N.; Plotkin, M.A.; Johnston,
the University of Patras, and the authors are indebted to Dr.
D. Vachliotis for performing these measurements.
[4]
J.N. Free radical-mediated aryl amination and its use in
a
convergent [3+2] strategy for enantioselective indoline ꢁ-amino
acid synthesis. J. Am. Chem. Soc., 2003, 125, 163-168. (b) Leroi,
C.; Bertin, D.; Dufils, P.-E.; Gigmes, D.; Marque, S.; Tordo, P.;
Couturier, J.-L.; Guerret, O.; Ciufolini, M.A. Alkoxyamine-
mediated radical synthesis of indolinones and indolines. Org. Lett.,
2003, 5, 4943-4945. (c) Fuwa, H.; Sasaki, M. Strategies for the
synthesis of 2-substituted indoles and indolines starting from
SUPPLEMENTARY MATERIAL
Supplementary material is available on the publishers
Web site along with the published article.
REFERENCES AND NOTES
acyclic ꢁ-phosphoryloxy enecarbamates. Org. Lett., 2007, 9, 3347-
3350. (d) Viswanathan, R.; Smith, C.R.; Prabhakaran, E.N.;
Johnston, J.N. Free radical-mediated aryl amination: Convergent
two- and three-component couplings to chiral 2,3-disubstituted
indolines. J. Org. Chem., 2008, 73, 3040-3046. (e) Prediger, I.;
Weiss, T.; Reiser, O. Facile access to 2-arylindolines and 2-
arylindoles by microwave-assisted tandem radical cyclization.
Synthesis, 2008, 2191-2198. (f) Wipf, P.; Maciejewski, J.P.
Titanocene(III)-catalyzed formation of indolines and azaindolines.
Org. Lett., 2008, 10, 4383-4386.
[1]
(a) Boger, D.L.; Boyce, C.W.; Garbaccio, R.M.; Goldberg, J.A.
CC-1065 and the Duocarmycins: synthetic studies. Chem. Rev.,
1997, 97, 787-828. (b) Zhao, He; He, X.; Thurkauf, A.; Hoffman,
D.; Kieltyka, A.; Brodbeck, R.; Primus, R.; Wasley, J.W.F.
Indoline and piperazine containing derivatives as a novel class of
mixed D2/D4 receptor antagonists. Part 2: asymmetric synthesis
and biological evaluation. Bioorg. Med. Chem. Lett., 2002, 12,
3111-3115. (c) Sunazuka, T.; Shirahata, T.; Tsuchiya, S.; Hirose,
T.; Mori, R.; Harigaya, Y.; Kuwajima, I.; Ohmura, S. A concise
stereoselective route to the indoline spiroaminal framework of
Neoxaline and Oxaline. Org. Lett., 2005, 7, 941-943. (d) Chang,
J.-Y.; Hsieh, H.-P.; Chang, C.-Y.; Hsu, K.-S.; Chiang, Yi-F.; Chen,
C.-M.; Kuo, C.-C.; Liou, J.-P. 7-Aroyl-aminoindoline-1-
sulfonamides as a novel class of potent antitubulin agents. J. Med.
Chem., 2006, 49, 6656-6659. (e) Noguchi, T.; Tanaka, N.;
Nishimata, T.; Goto, R.; Hayakawa, M.; Sugidachi, A.; Ogawa, T.;
Asai, F.; Ozeki, T.; Fujimoto, K. Indoline derivatives II: Synthesis
and Factor Xa (FXa) inhibitory activities. Chem. Pharm. Bull.,
2007, 55, 393-402. (f) Lacivita, E.; Leopoldo, M. Selective agents
for serotonin2C (5-HT2C) receptor. Curr. Top. Med. Chem., 2006, 6,
1927-1970. (g) Sakashita, H.; Akahoshi, F.; Yoshida, T.; Kitajima,
H.; Hayashi, Y.; Ishii, S.; Takashina, Y.; Tsutsumiuchid, R.; Onoa,
S. Lead optimization of [(S)-ꢀ-(arylamino)prolyl]thiazolidine
[5]
Thansandote, P.; Raemy, M.; Rudolph, A.; Lautens, M. Synthesis
of benzannulated N-heterocycles by
a
palladium-catalyzed
CꢁC/CꢁN coupling of bromoalkylamines. Org. Lett., 2007, 9,
5255-5258.
Minatti, A.; Buchwald S. L. Synthesis of indolines via a domino
Cu-catalyzed amidation/cyclization reaction. Org. Lett., 2008, 10,
2721-2724.
[6]
[7]
Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Synthesis of indolines and
tetrahydroisoquinolines from arylethylamines by PdII-catalyzed C-
H activation reactions. Angew. Chem., Int. Ed. Engl., 2008, 47,
6452-6455.
Garcia Ruano, J.L.; Alemán, J.; Catalán, S.; Marcos, V.;
Monteagudo, S.; Parra, A.; del Pozo, C.; Fustero S. Anionic-
anionic asymmetric tandem reactions: One-pot synthesis of
optically pure fluorinated indolines from 2-p-tolylsulfinyl
alkylbenzenes Angew. Chem., Int. Ed. Engl., 2008, 47, 7941-7944.
Dunetz, J.R.; Danheiser, R.L. Synthesis of highly substituted
indolines and indoles via intramolecular [4+2] cycloaddition of
ynamides and conjugated enynes. J. Am. Chem. Soc., 2005, 127,
5776-5777.
[8]
[9]
focused on ꢀ-substituent: Indoline compounds as potent DPP-IV
inhibitors. Bioorg. Med. Chem., 2007, 15, 641-655.
[2]
(a) Sherman, E.S.; Chemler, S.R.; Tan, T.B.; Gerlits, O. Copper(II)
acetate promoted oxidative cyclization of arylsulfonyl-o-
allylanilines. Org. Lett., 2004, 6, 1573-1575. (b) Lira, R.; Wolfe,
J.P. Palladium-catalyzed synthesis of N-aryl-2-benzylindolines via
tandem arylation of 2-allylaniline: Control of selectivity through in
situ catalyst modification. J. Am. Chem. Soc., 2004, 126, 13906-
13907. (c) Alexanian, E.J.; Lee, C.; Sorensen, E.J. Palladium-
catalyzed ring-forming aminoacetoxylation of alkenes. J. Am.
Chem. Soc., 2005, 127, 7690-7691. (d) Liu, P.; Huang, L.; Lu, Y.;
Dilmeghani, M.; Baum, J.; Xiang, T.; Adams, J.; Tasker, A.;
Larsen, R.; Faul, M.M. Synthesis of heterocycles via ligand-free
palladium catalyzed reductive Heck cyclization. Tetrahedron Lett.,
2007, 48, 2307-2310. (e) Sherman, E.S.; Fuller, P.H.; Kasi, D.;
Chemler, S.R. Pyrrolidine and piperidine formation via copper(II)
[10]
[11]
Fousteris, M.; Chevrin, C.; Le Bras, J.; Muzart, J. Water-promoted
iodocyclisation of 2-allylphenols. Green Chem., 2006, 8, 522-523.
Yadav, A. K.; Singh, B. K.; Singh, N.; Tripathi, R. P. An elegant
and unprecedented approach to 2-methylbenzofurans. Tetrahedron
Lett. 2007, 48, 6628-6632.
[12]
(a) Minakata, S.; Kano, D.; Oderaotoshi, Y.; Komatsu, M. Unique
ionic iodine atom transfer cyclization:
a
new route to
iodomethylated pyrrolidine derivatives from ꢀ-iodoolefin and
chloramine-T. Org. Lett., 2002, 4, 2097-2099. (b) Minakata, S.;
Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Practical and
convenient synthesis of N-heterocycles: stereoselective cyclization
of N-alkenylamides with t-BuOI under neutral conditions. Org.
Lett., 2006, 8, 3335-3337.
Amjad, M.; Knight, D. W. On the rapid synthesis of highly
substituted proline analogues by 5-endo-trig iodocyclisation.
Tetrahedron Lett., 2006, 47, 2825-2828.
carboxylate-promoted
intramolecular
carboamination
of
unactivated olefins: diastereoselectivity and mechanism. J. Org.
Chem., 2007, 72, 3896-3905. (f) Watanabe, T.; Oishi, S.; Fujii, N.;
Ohno, H. Palladium-catalyzed sp3 C-H activation of simple alkyl
groups: Direct preparation of indoline derivatives from N-alkyl-2-
bromoanilines. Org. Lett., 2008, 10, 1759-1762.
[13]
[14]
[15]
Morino, Y.; Hidaka, I.; Oderaotoshi, Y.; Komatsu, M.; Minakata,
[3]
(a) Nicolaou, K.C.; Roecker, A.J.; Pfefferkorn, J.A.; Cao, G.-Q. A
novel strategy for the solid-phase synthesis of substituted indolines.
J. Am. Chem. Soc., 2000, 122, 2966-2967. (b) Bailey, W.F.;
Luderer, M.R.; Mealy, M.J. Preparation of differentially 1,3-
disubstituted indolines by intramolecular carbolithiation.
Tetrahedron Lett., 2003, 44, 5303-5305. (c) Yin, Y.; Zhao, G.
Synthesis of indolines and quinoline via cyclization of N-
S. Electrophilic cyclization of N-alkenylamides using
chloramine-T/I2 system. Tetrahedron 2006, 62, 12247-12251.
a
Manzoni, M.R.; Zabawa, T.P.; Kasi, D.; Chemler, S.R.
Palladium(II)-catalyzed intramolecular aminobromination and
aminochlorination of olefins. Organometallics, 2004, 23, 5618-
5621.
This nitrogen substituent is commonly used for the halocyclization
of N-alkenylamides [12-15].
[16]
[17]
arylsulfonyl-2-allylanilines
Heterocycles, 2006, 68, 23-31. (d) Correa, A.; Tellitu, I.;
Dominguez, E.; SanMartin, R. A metal-free approach to the
synthesis of indoline derivatives by
bis(trifluoroacetate)-mediated amidohydroxylation reaction. J. Org.
Chem., 2006, 71, 8316-8319. (e) Groth, U.; Köttgen P.;
Langenbach P.; Lindenmaier A.; Schütz T.; Wiegand, M.
Enantioselective synthesis of 3,3-disubstituted indolines via
asymmetric intramolecular carbolithiation in the presence of (-)-
sparteine. Synlett, 2008, 1301-1304. (f) Ichikawa, J.; Iwai, Y.;
Nadano, R.; Mori, T.; Ikeda M. A new class of substrates for
nucleophilic 5-endo-trig cyclization, 2-trifluoromethyl-1-alkenes:
catalyzed
by
Brønsted
acid.
Physical data for compound 2a: Mp: 146.5-147.5 ºC. IR (KBr) ꢂ
cm-1: 3009, 2920, 2837, 1597, 1487, 1350, 1161, 812, 704, 665,
a
phenyliodine(III)
1
606, 571, 540. H NMR (CDCl3, 400 MHz): ꢀ 2.36 (s, 3H), 2.73-
2.84 (m, 2H), 3.23 (t, J = 10.0 Hz, 1H), 3.62 (dd, J = 9.7, 3.6 Hz,
1H), 3.76 (s, 3H), 4.29-4.35 (m, 1H), 6.60 (d, J = 2.5 Hz, 1H), 6.76
(dd, J = 8.8, 2.6 Hz, 1H), 7.18 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.3
Hz, 2H), 7.55 (d, J = 8.8 Hz, 1H). 13C NMR (CDCl3, 100 MHz): ꢀ
11.1, 21.5, 34.9, 55.6, 62.9, 110.9, 113.2, 118.2, 127.2, 129.7,
132.4, 134.3, 134.6, 144.1, 157.6. GC-MS (EI): tR = 14.08; 443
(12) [M+], 288 (44), 161 (100), 146 (18), 130 (4), 118 (5), 105, 91