C O M M U N I C A T I O N S
Table 2. Scope of Alkyl Grignard Reagents and
Electron-Withdrawing Groups for Tandem ACA-Enolate Trapping
toward trans-Cyclopropanesa
based on a commercial chiral ligand, CuI, and Grignard reagents.
Application of this methodology in natural product synthesis
and other ring structures will be reported in due course.
Acknowledgment. Dedicated to the memory of Dr. M. M.
Pollard. We thank M. Bastian for providing substrate 6b and T. D.
Tiemersma-Wegman and M. J. Smith for technical support (GC,
HPLC, MS). Financial support from NWO-CW is gratefully
acknowledged.
entry
R1
R2
product
yield (%)
eeb (%)
1
2
3
4
SEt
SEt
SEt
SEt
SEt
SEt
SEt
SEt
6b
6b
6b
6b
6b
6b
6b
6b
6b
6e
6e
6f
hexyl
Me
Et
iPr
8b
8g
8h
8i
8j
8k
8l
8m
8n
8e
8o
8f
87
56
67
89
91
88
>95d
92
50
75
87
68
94
87
95
70
84
94
96
84
26
96
98
>95
Supporting Information Available: Experimental details, data, and
spectra. This material is available free of charge via the Internet at
5
iBu
6c
7d
8
but-3-enyl
(CH2)3OtBu
BnCH2
Ph
BnCH2
Me
References
(1) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc.
1998, 120, 11943–11952.
9d
10
11
12
SEt
(2) For the asymmetric synthesis of trans-1-alkyl-2-substituted cyclopropanes
using chiral auxiliaries or substrates, see: (a) Arai, I.; Mori, A.; Yamamoto,
H. J. Am. Chem. Soc. 1985, 107, 8254–8256. (b) Aggarwal, V. K.; Fang,
G. Y.; Meek, G. Org. Lett. 2003, 5, 4417–4420. (c) Risatti, C. A.; Taylor,
R. E. Angew. Chem., Int. Ed. 2004, 43, 6671–6672. (d) Cheeseman, M.;
Feuillet, F. J. P.; Johnson, A. L.; Bull, S. D. Chem. Commun. 2005, 2372–
2374. (e) Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070–3071.
(f) Vega-Pe´rez, J. M.; Perin˜a´n, I.; Iglesias-Guerra, F. Tetrahedron:
Asymmetry 2009, 20, 1065–1072. (g) Cheeseman, M.; Davies, I. R.; Axe,
P.; Johnson, A. L.; Bull, S. D. Org. Biomol. Chem. 2009, 7, 3537–3548.
(h) For the formation of trans-alkyl substituted cyclopropanes via catalytic
asymmetric epoxidation-intramolecular methylene transfer, see: Hardee,
D. J.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 7536–7537.
(3) (a) Fritschi, H.; Leutenegger, U.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1986, 25, 1005–1006. (b) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 1998,
120, 10270–10271. (c) Mazet, C.; Ko¨hler, V.; Pfaltz, A. Angew. Chem.,
Int. Ed. 2005, 44, 4888–4891.
C11H23
C11H23
OMe
BnCH2
a For conditions see Table 1, 1.0 mmol scale. b Determined by chiral
GC or HPLC. c 3.0 mmol scale. d Conversion; the cyclopropane proved
inseparable by column chromatography from the dimer of the Grignard
reagent. e 0.5 mmol scale.
amount of acyclic product 7b was obtained. When more than
1.2 equiv of the Grignard reagent was used, the corresponding
cyclopropane bearing a tertiary alcohol was formed, as a result
of a subsequent two-fold addition of the Grignard reagent to
the thioester moiety.
(4) For preparation of these structures via chiral cyclopropenes, see: Lou, Y.;
Horikawa, M.; Kloster, R. A.; Hawryluk, N. A.; Corey, E. J. J. Am. Chem.
Soc. 2004, 126, 8916–8918.
With the procedure for the synthesis of trans-cyclopropanes
developed, the scope of the alkyl Grignard reagents for this
transformation was explored. The use of both MeMgBr and
EtMgBr gave the corresponding volatile trans-cyclopropanes 8g
and 8h with good to excellent ee (entries 2 and 3). The Cu-
catalyzed transformation of 6b with the sterically encumbered
Grignard reagents iPrMgBr and iBuMgBr gave the corresponding
cyclopropanes 8i and 8j in slightly lower ee but high yield
(entries 4 and 5). The catalytic asymmetric synthesis of
cyclopropanes using functionalized Grignard reagents includes
those substituted with olefin, ether, and aryl groups. These
functionalized Grignard reagents gave cyclopropanes 8k, 8l, and
8m with ee’s ranging from 84 to 96% (entries 6-8). Finally,
when PhMgBr was used the product 8n was obtained in both
low yield and ee (entry 9).
Ketone substrate 6e gave, upon allowing the reaction mixture
to reach room temperature, the corresponding cyclopropane with
96% ee (Table 2, entry 10). The reaction of 6e with MeMgBr
gave cyclopropane 8o in excellent yield and 98% ee (entry 11).
When the reaction mixture of 6f and phenethylmagnesium
bromide was allowed to warm to room temperature, exclusively
cyclopropane 8f was obtained, virtually enantiomerically pure
(entry 12).
To illustrate the versatility of the developed method, cyclopro-
pane 8b was selectively reduced to the aldehyde (see Supporting
Information, SI Scheme 1), which is a key intermediate in a reported
synthesis13 of cascarillic acid.14,15 Furthermore, the reaction of 6b
with heptylmagnesium bromide gave cyclopropane 8p in 84% yield
and 95% ee. Reduction of 8p to the corresponding aldehyde then
gave an intermediate for the synthesis16 of grenadamide.17,18
In summary, a new and versatile enantioselective synthesis
of 4-chloro-3-alkyl-substituted thioesters and ketones and trans-
1-alkyl-2-substituted cyclopropane esters, thioesters, and ketones
has been developed using an extremely simple catalytic system,
(5) For recent reviews, see: (a) Pellissier, H. Tetrahedron 2008, 64, 7041–
7095. (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
ReV. 2003, 103, 977–1050. (c) Goudreau, S. R.; Charette, A. B. Angew.
Chem., Int. Ed. 2010, 49, 486–488. (d) Doyle, M. P. Angew. Chem., Int.
Ed. 2009, 48, 850–852.
(6) For recent, selected approaches to substituted cyclopropanes using Au
catalysis, see: (a) Watson, I. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem.
Soc. 2009, 131, 2056–2057. Co catalysis, see: (b) Ruppel, J. V.; Gauthier,
T. J.; Snyder, N. L.; Perman, J. A.; Zhang, X. P. Org. Lett. 2009, 11, 2273–
2276. Ir catalysis, see: (c) Ichinose, M.; Suematsu, H.; Katsuki, T. Angew.
Chem., Int. Ed. 2009, 48, 3121–3123. B catalysis, see: (d) Zimmer, L. E.;
Charette, A. B. J. Am. Chem. Soc. 2009, 131, 15624–15626. Pd catalysis,
see: (e) Liu, W.; Zhu, X.-Z.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc.
2009, 131, 8734–8735 (synthesis of a trans-1-alkyl-2-substituted cyclo-
propane in 18% yield, 3:1 trans:cis ratio and 89% ee) Rh catalysis, see: (f)
Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970–
6972. (g) DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. J. Am.
Chem. Soc. 2009, 131, 7230–7231. (h) Lindsay, V. N. G.; Lin, W.; Charette,
A. B. J. Am. Chem. Soc. 2009, 131, 16383–16385. (i) Chuprakov, S.; Kwok,
S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. J. Am. Chem. Soc. 2009, 131,
18034–18035. (j) Grimster, N.; Zhang, L.; Fokin, V. V. J. Am. Chem. Soc.
2010, 132, 2510–2511. Ru catalysis, see: (k) Xu, Z.-J.; Fang, R.; Zhao,
C.; Huang, J.-S.; Li, G.-Y.; Zhu, N.; Che, C.-M. J. Am. Chem. Soc. 2009,
131, 4405–4417. (l) Ito, J.-i.; Ujiie, S.; Nishiyama, H. Chem.sEur. J. 2010,
16, 4986–4990.
(7) For the non-asymmetric addition of Grignard reagents, see: (a) Ratney,
R. S.; English, J., Jr. J. Org. Chem. 1960, 25, 2213–2215. (b) Torii, S.;
Tanaka, H.; Nagai, Y. Bull. Chem. Soc. Jpn. 1977, 50, 2825–2826. (c)
Eisch, J. J.; Galle, J. E. J. Org. Chem. 1979, 44, 3277–3279. Li reagents,
see: (d) Cooke, M. P., Jr.; Jaw, J. Y. J. Org. Chem. 1986, 51, 758–760.
(8) These compounds have been observed as a side product: Lee, Y.; Hoveyda,
A. H. J. Am. Chem. Soc. 2006, 128, 15604–15605.
(9) (a) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258–297. (b)
Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa,
B. L. Chem. ReV. 2008, 108, 2824–2852. (c) Alexakis, A.; Ba¨ckvall, J. E.;
Krause, N.; Pa`mies, O.; Die´guez, M. Chem. ReV. 2008, 108, 2796–2823.
(10) den Hartog, T.; Macia´, B.; Minnaard, A. J.; Feringa, B. L. AdV. Synth.
Catal. 2010, 352, 999–1013.
(11) (a) Feringa, B. L.; Badorrey, R.; Pen˜a, D.; Harutyunyan, S. R.; Minnaard,
A. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5834–5838. (b) Lo´pez, F.;
Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.
2004, 126, 12784–12875. (c) Lo´pez, F.; Harutyunyan, S. R.; Minnaard,
A. J.; Feringa, B. L. Angew. Chem., Int. Ed. 2005, 44, 2752–2756. (d)
DesMazery, R.; Pullez, M.; Lo´pez, F.; Harutyunyan, S. R.; Minnaard, A. J.;
Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966–9967. (e) Wang, S.-Y.;
Ji, S.-J.; Loh, T.-P. J. Am. Chem. Soc. 2007, 129, 276–277. (f) Macia´, B.;
Geurts, K.; Ferna´ndez-Iba´n˜ez, M. A.; ter Horst, B.; Minnaard, A. J.; Feringa,
B. L. Org. Lett. 2007, 9, 5123–5126. (g) Wang, S.-Y.; Lum, T.-K.; Ji,
S.-J.; Loh, T.-P. AdV. Synth. Catal. 2008, 350, 673–677. (h) Jerphagnon,
9
14350 J. AM. CHEM. SOC. VOL. 132, NO. 41, 2010