Song et al.
Report
Hz), 115.5 (d, J = 21.3 Hz), 95.5, 92.0, 52.6, 52.5, 50.9, 27.8; 19F NMR
(282 MHz, CDCl3) -115.6 (s, 1 F); IR (neat, cm-1) 3002, 2955, 2847,
1951, 1753, 1737, 1602, 1508, 1436, 1342, 1226, 1157, 1094, 1039;
MS (EI, 70 eV) m/z (%) 279 (M+ + 1, 5.38), 278 (M+, 31.41), 146 (100);
HRMS calcd. for C15H15O4F [M+]: 278.0954, found: 278.0952.
42, 8434-8466; (b) Neff, R. K.; Frantz, D. E. Recent applications of chiral
allenes in axial-to-central chirality transfer reactions. Tetrahedron 2015, 71,
7-18; (c) Alonso, J. M.; M. Quirós, T.; Muñoz, M. P. Chirality transfer in
metal-catalysed intermolecular addition reactions involving allenes. Org.
Chem. Front. 2016, 3, 1186-1204; (d) Amako, Y.; Arai, S.; Nishida, A.
Transfer of axial chirality through the nickel-catalysed hydrocyanation of
chiral allenes. Org. Biomol. Chem. 2017, 15, 1612-1617; (e) Zhou, J.; Fu, C.;
Ma, S. Gold-catalyzed stereoselective cycloisomerization of allenoic acids
for two types of common natural γ-butyrolactones. Nat. Commun. 2018, 9,
1654-1663; (f) Han, Y.; Ma, S. Rhodium-catalyzed highly diastereoselective
intramolecular [4+2] cycloaddition of 1,3-disubstituted allene-1,3-dienes.
Org. Chem. Front. 2018, 5, 2680-2684; (g) Han, Y.; Qin, A.; Ma, S. One stone
for three birds-rhodium-catalyzed highly diastereoselective intramolecular
[4+2] cycloaddition of optically active allene-1,3-dienes. Chin. J. Chem.
2019, 37, 486-496; (h) Han, Y.; Zhao, Y.; Ma, S. Rhodium-catalyzed Pauson-
Khand-type cyclization of 1,5-allene-alkynes: a chirality transfer strategy
for optically active bicyclic ketones. Chem. Eur. J. 2019, 25, 9529-9533.
[4] For selected reviews of the synthesis of allenes: (a) Krause, N.; Hoffmann-
Röder, A. Synthesis of allenes with organometallic reagents. Tetrahedron
2004, 60, 11671-11694; (b) Brummond, K. M., DeForrest, J. E. Synthesizing
allenes today (1982–2006). Synthesis 2007, 6, 795-818; (c) Ogasawara, M.
Catalytic enantioselective synthesis of axially chiral allenes. Tetrahedron:
asymmetry 2009, 20, 259-271; (d) Yu, S.; Ma, S. How easy are the syntheses
of allenes? Chem. Commun. 2011, 47, 5384-5418; (e) Neff, R. K.; Frants, D.
Supporting Information
The supporting information for this article is available on the
Acknowledgement
Financial support from the National Natural Science
Foundation of China (21690063 and 21572202) is greatly
appreciated. We thank Mr. Jie Lin in this group for reproducing the
preparation of
(Ra)-3cb and (Ra, Ra)-4ea. Shengming Ma is a Qiu
Shi Adjunct Professor at Zhejiang University.
References
[1] (a) Kavanagh, F.; Hervey, A.; Robbins, W. J. Antibiotic substances from
basidiomycetes V. Poria corticola, poria tenuis and unidentified
basidiomycete. P. Natl. Acad. Sci. USA. 1950, 36, 1-7; (b) Horler, D. F. (-)
Methyl n-tetradeca-trans-2,4,5-trienoate, an allenic ester produced by the
male dried bean beetle, acanthoscelides obtectus (Say). J. Chem. Soc. C.
1970, 859-862; (c) Cox, P. J.; Imre, S.; Islimyeli, S.; Thomson, R. H.
E. Recent advances in the catalytic syntheses of allenes:
a critical
assessment. ACS Catal. 2014, 4, 519-528; (f) Ye, J.; Ma, S. Conquering
three-carbon axial chirality of allenes. Org. Chem. Front. 2014, 1, 1210-
1224; (g) Chu, W.; Zhang, Y.; Wang, J. Recent advances in catalytic
asymmetric synthesis of allenes. Catal. Sci. Technol. 2017, 7, 4570-4579.
[5] For recent reports on catalytic enantioselective syntheses of allenes, see:
(a) Li, C.; Wang, X.; Sun, X.; Tang, Y.; Zheng, J.; Xu, Z.; Zhou, Y.; Dai, L. Iron
porphyrin-catalyzed olefination of ketenes with diazoacetate for the
enantioselective synthesis of allenes. J. Am. Chem. Soc. 2007, 129, 1494-
1495; (b) Nishimura, T.; Makino, H.; Nagaosa, M.; Hayashi, T. Rhodium-
catalyzed enantioselective 1,6-addition of arylboronic acids to enynamides:
asymmetric synthesis of axially chiral allenylsilanes. J. Am. Chem. Soc. 2010,
132, 12865-12867; (c) Wan, B.; Ma, S. Enantioselective decarboxylative
amination: synthesis of axially chiral allenyl amines. Angew. Chem. Int. Ed.
2013, 52, 441-445; (d) Wang, Y.; Zhang, W.; Ma, S. A room-temperature
catalytic asymmetric synthesis of allenes with ECNU-Phos. J. Am. Chem. Soc.
2013, 135, 11517-11520; (e) Wang, M.; Liu, Z.; Zhang, X.; Tian, P.; Xu, Y.;
Loh, T. P. Synthesis of highly substituted racemic and enantioenriched
allenylsilanes via Copper-catalyzed hydrosilylation of (Z)-2-alken-4-ynoates
with silylboronate. J. Am. Chem. Soc. 2015, 137, 14830-14833; (f) Yao, Q.;
Liao, Y.; Lin, L.; Lin, X.; Ji, J.; Liu, X.; Feng, X. Efficient synthesis of chiral
trisubstituted 1,2-allenyl ketones by catalytic asymmetric conjugate
addition of malonic esters to enynes. Angew. Chem. Int. Ed. 2016, 55, 1859-
1863; (g) Liu, Y.; Liu, X.; Hu, H.; Guo, J.; Xia, Y.; Lin, L.; Feng, X. Synergistic
kinetic resolution and asymmetric propargyl claisen rearrangement for the
synthesis of chiral allenes. Angew. Chem. Int. Ed. 2016, 55, 4054-4058; (h)
Chu, W. D.; Zhang, L.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective
Synthesis of trisubstituted allenes via Cu(I)-catalyzed coupling of
diazoalkanes with terminal alkynes. J. Am. Chem. Soc. 2016, 138, 14558-
14561; (i) Poh, J. S.; Makai, S.; Keutz, T. v.; Tran, D. N. Battilocchio, C.; Pasau,
P.; Ley, S. V. Rapid asymmetric synthesis of disubstituted allenes by
coupling of flow-generated diazo compounds and propargylated amines.
Obusallene I,
a new halogenated allene from laurencia obtusa.
Tetrahedron Lett. 1982, 5, 579-580; (d) Gorins, G.; Kuhnert, L.; Johnson, C.
R.; Marnett, L. J. (Carboxyalkyl)benzy propargyl ethers as selective
inhibitors of leukocyte-type 12-lipoxygenases. J. Med. Chem. 1996, 39,
4871-4878; (e) McGrath, M. J.; Fletcher, M. T.; König, W. A.; Moore, C. J.;
Cribb, B. W.; Allsopp, P. G.; Kitching, W. A suite of novel allenes from
australian melolonthine scarab beetles. Structure, synthesis, and
stereochemistry. J. Org. Chem. 2003, 68, 3739-3748; (f) Hoffmann-Röder,
A.; Krause, N. Synthesis and properties of allenic natural products and
pharmaceuticals. Angew. Chem. Int. Ed. 2004, 43, 1196-1216; (g) Jian, Y. J.;
Wu, Y. The enantioselective total synthesis of nemotin. Org. Biomol. Chem.
2010, 8, 811-821.
[2] (a) Hiroi, K.;
Kato, F.; Yamagata, A. Asymmetric direct α,β-
functionalization of allenes via asymmetric carbopalladation. Chem. Lett.
1998, 397-398; (b) Ogasawara, M.; Nagano, T.; Hayashi, T. A new route to
methyl (R,E)-(-)-Tetradeca-2,4,5-trienoate (Pheromone of Acanthoscelides
obtectus) utilizing a Palladium-catalyzed asymmetric allene formation
reaction. J. Org. Chem. 2005, 70, 5764-5767; (c) Crouch, I. T.; Neff, R. K.;
Frantz, D. E. Pd-catalyzed asymmetric β-Hydride elimination en route to
chiral allenes. J. Am. Chem. Soc. 2013, 135, 4970-4973; (d) Tang, X.; Huang,
X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Tang, Y.; Zhang, J.; Yu, Q.; Fu, C.; Ma,
S. CuBr2-catalyzed enantioselective routes to highly functionalized and
naturally occurring allenes. Org. Chem. Front. 2015, 2, 688-691; (e) Jiang,
X.; Xue, Y.; Ma, S. Aerobic oxidation and EATA-based highly
enantioselective synthesis of lamenallenic acid. Org. Chem. Front. 2017, 4,
951-957; (f) Oonishi, Y.; Hosotani, A.; Yokoe, T.; Sato, Y. Rhodium(I)-
catalyzed enantioselective hydroacylation of racemic allenals via dynamic
kinetic resolution. Org. Lett. 2019, 21, 4120-4123.
[3] (a) Campolo, D.; Gastaldi, S.; Roussel, C.; Bertrand, M. P.; Nechab, M. Axial-
to-central chirality transfer in cyclization processes. Chem. Soc. Rev. 2013,
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.