facile process, the CD signals should have shown current-
independent decay in the middle of electrolysis, but this was not
the case (Fig. S4, ESIw).
The intermolecular transmission of asymmetric information
into these chiral memory units is the next step in our project,
and the catalytic asymmetric induction of 1 (biasing of the
P/M ratio) followed by oxidation to configurationally stable
22+ is now being studied to demonstrate the ‘‘writing’’-process
for the present chiral memory unit.
Notes and references
Fig. 3 CD spectrum of optically pure 2a2+(BF4ꢀ)2 prepared from (ꢀ)-4.
z Crystal data of 1a: C44H38O5,
M 646.78, monoclinic, P21/n,
a = 12.331(2), b = 20.121(4), c = 13.178(2) A, b = 94.0081(9)1,
V = 3261.6(10) A3, Z = 4, Dc 1.317 g cmꢀ3, independent reflection
TfOMe. It exhibits a large negative couplet in the CD spectrum
[lext 270 nm (De ꢀ36.4), 258 (+33.0) in CH2Cl2], and again the
Cotton effects remained unchanged over several days at 25 1C.
This material was subjected to electrochemical reduction, and the
changes were followed by three kinds of spectroscopy at 25 1C.
The UV-Vis spectral changes of 2b2+ into neutral donor 1b
exhibit several isosbestic points with a loss of absorptions in the
visible region, which were regenerated upon reoxidation (Fig. 4a).
Fluorescence of (M)-2b2+ was also lost upon reduction to 1b, yet
recovered completely upon reversal of the polarity of the electro-
des (Fig. 4b), which demonstrates clean interconversion between
1b and 2b2+. In contrast, the CD signals of (M)-2b2+ disappeared
gradually upon reduction, and were not reproduced upon
reoxidation (Fig. 4c), which demonstrates that the resulting
(M)-1b was easily racemized to lose chiral information. These
findings successfully demonstrate the electrochemical response of
a novel chiral memory unit (‘‘erasing’’-process of chiral memory).
If the electron-exchange between 1b and 2b2+ (Scheme 2) was a
7479 (all), 4304 (2s), T = 153 K, R = 3.6%, CCDC 728167. Crystal data
of rac-2a2+(SbCl6ꢀ)2: C44H38Cl12O5Sb2,
M
1315.72, triclinic, P1,
ꢀ
a = 12.073(4), b = 15.599(6), c = 27.406(11) A, a = 81.941(18)1,
b
=
80.772(18)1,
g
=
79.240(18)1,
V
=
4972(3) A3,
Z =
4,
Dc 1.757 g cmꢀ3, independent reflection 23827 (all), 2969 (2s), T = 153
K, R = 5.8%, CCDC 728166. Crystal data of 1b benzene solvate (1 : 1):
C48H38N2O, M 658.84, monoclinic, C2/c, a = 23.560(4), b = 11.900(2),
c = 13.927(2) A, b = 120.2315(5)1, V = 3373.5(9) A3, Z = 4, Dc 1.297 g
cmꢀ3, independent reflection 3776 (all), 3289 (2s), T = 153 K, R = 7.0%,
CCDC 762284.
1 (a) R. Purrello, Nat. Mater., 2003, 2, 216; (b) A. R. A. Palmans and
E. W. Meijer, Angew. Chem., Int. Ed., 2007, 46, 8948;
(c) G. A. Hembury, V. V. Borovkov and Y. Inoue, Chem. Rev.,
2008, 108, 1.
2 (a) T. Ishi-i, M. Crego-Calama, P. Timmerman, D. R. Reinhoudt
and S. Shinkai, J. Am. Chem. Soc., 2002, 124, 14631;
(b) R. D. Rasberry, X. Wu, B. N. Bullock, M. D. Smith and
K. D. Shimizu, Org. Lett., 2009, 11, 2599.
3 (a) E. Yashima, K. Maeda and Y. Okamoto, Nature, 1999, 399, 449;
(b) M. Ishikawa, K. Maeda, Y. Mitsutsuji and E. Yashima, J. Am.
Chem. Soc., 2004, 126, 732; (c) N. Ousaka, Y. Inai and R. Kuroda,
J. Am. Chem. Soc., 2008, 130, 12266; (d) T. Miyabe, Y. Hase,
H. Iida, K. Maeda and E. Yashima, Chirality, 2009, 21, 44.
4 (a) Y. Mizuno, T. Aida and K. Yamaguchi, J. Am. Chem. Soc.,
2000, 122, 5278; (b) R. Katoono, H. Kawai, K. Fujiwara and
T. Suzuki, Chem. Commun., 2005, 5154; (c) J. Setsune,
A. Tsukajima, N. Okazaki, J. M. Lintuluoto and M. Lintuluoto,
Angew. Chem., Int. Ed., 2009, 48, 771; (d) R. Randazzo,
A. Mammana, A. D’Urso, R. Lauceri and R. Purrello, Angew.
Chem., Int. Ed., 2008, 47, 9879; R. Randazzo, A. Mammana,
A. D’Urso, R. Lauceri and R. Purrello, Angew. Chem., Int. Ed.,
2009, 48, 1351.
5 (a) J. W. Canary, Chem. Soc. Rev., 2009, 38, 747; (b) H. Goto and
E. Yashima, J. Am. Chem. Soc., 2002, 124, 7943.
6 (a) T. Suzuki, E. Ohta, H. Kawai, K. Fujiwara and T. Fukushima,
Synlett, 2007, 851; (b) T. Suzuki, H. Higuchi, T. Tsuji, J. Nishida,
Y. Yamashita and T. Miyashi, Chemistry of Nanomolecular
Systems. Chapter 1: Dynamic Redox Systems, Springer,
Heidelberg, 2003, pp. 3–24; (c) T. Suzuki, J. Nishida and T. Tsuji,
Angew. Chem., Int. Ed. Engl., 1997, 36, 1329; (d) T. Suzuki,
S. Tanaka, H. Kawai and K. Fujiwara, Chem–Asian J., 2007, 2, 171.
7 (a) T. Suzuki, R. Yamamoto, H. Higuchi, E. Hirota, M. Ohkita
and T. Tsuji, J. Chem. Soc., Perkin Trans. 2, 2002, 1937;
(b) J. Nishida, T. Suzuki, M. Ohkita and T. Tsuji, Angew. Chem.,
Int. Ed., 2001, 40, 3251; (c) T. Suzuki, Y. Ishigaki, T. Iwai,
H. Kawai, K. Fujiwara, H. Ikeda, Y. Kano and K. Mizuno,
Chem.–Eur. J., 2009, 15, 9434.
8 R. Schmid, M. Cereghetti, B. Heiser, P. Schonholzer and
¨
H.-J. Hansen, Helv. Chim. Acta, 1988, 71, 897.
9 Dibromide 3 was more conveniently prepared from 1,3-dibromo-
benzene via 2,20,6,60-tetrabromobiphenyl as shown in Scheme S1 of
ESIw.
10 Based on the Flack parameter in the preliminary crystallographic
study of the resolved 2a2+(SbCl6ꢀ)2, helicity would be M for the
enantiomer with the positive couplet shown in Fig. 3.
11 T. Nehira, Y. Yoshimoto, K. Wada, H. Kawai, K. Fujiwara and
T. Suzuki, Chem. Lett., 2010, 165.
Fig. 4 (left) Changes in the (a) UV-Vis, (b) fluorescence (lexc 370 nm),
and (c) CD spectra of (M)-2b2+ (9.0 ꢃ 10ꢀ6 M) in MeCN (containing
0.05 M Et4NClO4) upon constant-current electrochemical reduction
(37 mA at 2.5 min interval, at 25 1C). Figures on the right show the
changes upon reoxidation of the as-prepared 1b (37 mA at 3 min interval).
ꢁc
This journal is The Royal Society of Chemistry 2010
4102 | Chem. Commun., 2010, 46, 4100–4102